Примеры функций углеводов – —

    Содержание

    Строение и функции углеводов и липидов

    Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой Cn(H2O)m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

    Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

    Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

    Глюкоза, или виноградный сахар (С6Н12О6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

    Глюкоза — это:

    1. один из самых распространенных моносахаридов,
    2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
    3. мономер многих олигосахаридов и полисахаридов,
    4. необходимый компонент крови.

    Фруктоза, или фруктовый сахар, относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

    Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется 

    гликозидной.

    Сахароза, или тростниковый, или свекловичный сахар, — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

    Мальтоза, или солодовый сахар, — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

    Лактоза, или молочный сахар, — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2–8,5%).

    Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

    Крахмал (С6Н10О5)n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%.

    Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

    Гликоген (С6Н10О5)n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

    Целлюлоза (С6Н10О5)n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

    Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

    Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

    Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

    Функции углеводов

    ФункцияПримеры и пояснения
    ЭнергетическаяОсновной источник энергии для всех видов работ, происходящих в клетках. При расщеплении 1 г углеводов выделяется 17,6 кДж.
    СтруктурнаяИз целлюлозы состоит клеточная стенка растений, из муреина — клеточная стенка бактерий, из хитина — клеточная стенка грибов и покровы членистоногих.
    ЗапасающаяРезервным углеводом у животных и грибов является гликоген, у растений — крахмал, инулин.
    ЗащитнаяСлизи предохраняют кишечник, бронхи от механических повреждений. Гепарин предотвращает свертывание крови у животных и человека.

    Строение и функции липидов

    Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам, говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

    Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. 

    Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок –СН2–. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (–СН=СН–), такую жирную кислоту называют ненасыщенной. Если жирная кислота не имеет двойных связей, ее называют насыщенной. При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

    Если в триглицеридах преобладают насыщенные жирные кислоты, то при 20°С они — твердые; их называют жирами, они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты, то при 20 °С они — жидкие; их называют маслами, они характерны для растительных клеток.


    1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
    4 — гидрофильная головка; 5 — гидрофобный хвост.

    Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

    К простым липидам также относят 

    воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

    Сложные липиды. К ним относят фосфолипиды, гликолипиды, липопротеины и др.

    Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

    Гликолипиды — см. выше.

    Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

    Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

    Функции липидов



    ФункцияПримеры и пояснения
    ЭнергетическаяОсновная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж.
    СтруктурнаяФосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран.
    ЗапасающаяЖиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания.

    Масла семян растений необходимы для обеспечения энергией проростка.

    ЗащитнаяПрослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов.

    Слои воска используются в качестве водоотталкивающего покрытия у растений и животных.

    ТеплоизоляционнаяПодкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате.
    РегуляторнаяГиббереллины регулируют рост растений.

    Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков.

    Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл.

    Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен.

    Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов.
    Источник метаболической водыПри окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь.
    КаталитическаяЖирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции.
    © Издательство «Лицей» © Пименова И.Н., Пименов А.В.

    dya4ckova.blogspot.com

    Строение и функции углеводов и липидов | Учеба-Легко.РФ

    Строение, примеры и функции углеводов

    Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой Cn(H2O)m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

     

    Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

    Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

    Глюкоза, или виноградный сахар6Н12О6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

    Глюкоза — это:

    1. один из самых распространенных моносахаридов,
    2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
    3. мономер многих олигосахаридов и полисахаридов,
    4. необходимый компонент крови.

    Фруктоза, или фруктовый сахар, относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

    Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной.

    Сахароза, или тростниковый, или свекловичный сахар, — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

    Мальтоза, или солодовый сахар, — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

    Лактоза, или молочный сахар, — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2–8,5%).

    Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

    Крахмал6Н10О5)n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

    Гликоген6Н10О5)n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

    Целлюлоза6Н10О5)n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

    Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

    Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

    Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

    Функции углеводов

    Функция Примеры и пояснения
    Энергетическая Основной источник энергии для всех видов работ, происходящих в клетках. При расщеплении 1 г углеводов выделяется 17,6 кДж.
    Структурная Из целлюлозы состоит клеточная стенка растений, из муреина — клеточная стенка бактерий, из хитина — клеточная стенка грибов и покровы членистоногих.
    Запасающая Резервным углеводом у животных и грибов является гликоген, у растений — крахмал, инулин.
    Защитная Слизи предохраняют кишечник, бронхи от механических повреждений. Гепарин предотвращает свертывание крови у животных и человека.

    Строение и функции липидов

    Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам, говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

    Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок –СН2–. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (–СН=СН–), такую жирную кислоту называют ненасыщенной. Если жирная кислота не имеет двойных связей, ее называют насыщенной. При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

     

    Если в триглицеридах преобладают насыщенные жирные кислоты, то при 20°С они — твердые; их называют жирами, они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты, то при 20 °С они — жидкие; их называют маслами, они характерны для растительных клеток.

    1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
    4 — гидрофильная головка; 5 — гидрофобный хвост.

    Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

    К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

    Сложные липиды. К ним относят фосфолипиды, гликолипиды, липопротеины и др.

    Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

    Гликолипиды — см. выше.

    Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

    Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

    Функции липидов

    Функция Примеры и пояснения
    Энергетическая Основная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж.
    Структурная Фосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран.
    Запасающая Жиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания.

    Масла семян растений необходимы для обеспечения энергией проростка.

    Защитная Прослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов.

    Слои воска используются в качестве водоотталкивающего покрытия у растений и животных.

    Теплоизоляционная Подкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате.
    Регуляторная Гиббереллины регулируют рост растений.

    Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков.

    Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл.

    Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен.

    Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов.
    Источник метаболической воды При окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь.
    Каталитическая Жирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции.

     

    uclg.ru

    Строение, примеры и функции углеводов

    Количество просмотров публикации Строение, примеры и функции углеводов — 327

    Углеводы — органические соединœения, состав которых в большинстве случаев выражается общей формулой Cn(H2O)m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

    Моносахариды — простые углеводы, исходя из числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, бывают представлены в форме α- или β-изомеров.

    Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др.
    Размещено на реф.рф
    Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

    Глюкоза, или виноградный сахар6Н12О6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами состоит по сути в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

    Глюкоза — это:

    1. один из самых распространенных моносахаридов,
    2. важнейший источник энергии для всœех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
    3. мономер многих олигосахаридов и полисахаридов,
    4. необходимый компонент крови.

    Фруктоза, или фруктовый сахар, относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

    Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. Учитывая зависимость отчисла остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, принято называть гликозидной.

    Сахароза, или тростниковый, или свекловичный сахар, — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

    Мальтоза, или солодовый сахар, — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

    Лактоза, или молочный сахар, — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всœех млекопитающих (2–8,5%).

    Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

    Крахмал6Н10О5)n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

    Гликоген6Н10О5)n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

    Целлюлоза6Н10О5)n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесинœе — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

    Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

    Гликолипиды — комплексные вещества, образующиеся в результате соединœения углеводов и липидов.

    Гликопротеины — комплексные вещества, образующиеся в результате соединœения углеводов и белков.

    referatwork.ru

    Виды углеводов, их свойства и функции

    Для нашего организма углеводы являются одним из ключевых источников энергии. Сегодня мы рассмотрим виды и функции углеводов, а также узнаем, в каких продуктах питания они содержатся.

    Зачем человеку нужны углеводы?

    Прежде чем рассмотреть виды углеводов, разберемся с их функциями. В организме человека всегда есть углеводный запас в виде гликогена. Он составляет порядка 0,5 кг. 2/3 этого вещества находится в мышечных тканях, а еще треть – в печени. В промежутках между едой гликоген распадется на глюкозу, нивелируя тем самым колебания содержания сахара в крови.

    Без поступления в организм углеводов запасы гликогена заканчиваются через 12-18 часов. Если это происходит, углеводы начинают образовываться из промежуточных продуктов белкового обмена. Эти вещества жизненно необходимы человеку, так как они, в основном за счет окисления глюкозы, образуют в наших тканях энергию.

    Дефицит

    При хроническом дефиците углеводов запас гликогена в печени истощается, и в ее клетках начинают откладываться жиры. Это приводит к перерождению печени и нарушению ее функций. Когда человек потребляет с пищей недостаточное количество углеводов, его органы и ткани начинают использовать для синтеза энергии не только белок, но и жир. Усиленный распад жиров приводит к нарушению обменных процессов. Причина тому – ускоренное образование кетонов (самый известный из них – ацетон) и скапливание их в организме. Когда кетоны образуются в избытке, внутренняя среда организма «закисляется», а ткани головного мозга постепенно начинают отравляться.

    Избыток

    Как и дефицит, избыток углеводов не сулит пользы организму. Если человек принимает с пищей слишком много углеводов, уровень инсулина и глюкозы в крови повышается. В результате образуются жировые отложения. Происходит это следующим образом. Когда человек после завтрака целый день не ест, а вечером, придя с работы, решает принять обед, полдник и ужин одновременно, организм пытается бороться с избытком углеводов. Так и происходит повышение уровня сахара в крови. Чтобы глюкоза из крови перешла в клетки тканей, нужен инсулин. Он, в свою очередь, попадая в кровь, дает стимул синтезу жиров.

    Кроме инсулина, обмен углеводов регулируют и другие гормоны. Глюкокортикоиды – гормоны коры надпочечников, которые стимулируют синтез глюкозы из аминокислот в печени. Этот же процесс усиливается гормоном глюкагоном. По функциям глюкокортикоиды и глюкагон противоположны инсулину.

    Норма

    Согласно нормам, углеводы должны составлять 50-60 % от калорийности пищи. Исключать их из рациона нельзя, несмотря на то что они отчасти «виновны» в образовании лишних килограммов.

    Углеводы: виды, свойства

    По своей химической структуре углеводы делятся на простые и сложные. К первым относятся моно- и дисахариды, а ко вторым – полисахариды. Разберем оба класса веществ подробнее.

    Простые углеводы

    Глюкоза. Начинаем рассматривать простые виды углеводов с самого главного из них. Глюкоза выступает структурной единицей основного количества поли- и дисахаридов. При обмене веществ она распадается на молекулы моносахаридов. Они, в свою очередь, в ходе сложной реакции превращаются в вещества, окисляемые до воды и углекислого газа, которые являются топливом для клеток.

    Глюкоза является важным компонентом в углеводном обмене. Когда его уровень в крови падает или высокая концентрация делает нормальное функционирование организма невозможным (как в случае с диабетом), человек испытывает сонливость и может потерять сознание (гипогликемическая кома).

    В чистом виде глюкоза (как моносахарид) содержится в большом количестве овощей и фруктов. Особенно этим веществом богаты такие фрукты:

    • виноград – 7,8 %;
    • вишня и черешня – 5,5 %;
    • малина – 3,9 %;
    • земляника – 2,7 %;
    • арбуз и слива – 2,5 %.

    Среди овощей, богатых глюкозой, можно отметить: тыкву, белокочанную капусту и морковь. В них содержится около 2,5 % этого компонента.

    Фруктоза. Это один из наиболее распространенных фруктовых углеводов. Он, в отличие от глюкозы, может проникать из крови в ткани без участия инсулина. Поэтому фруктоза считается оптимальным источником углеводов для людей, страдающих диабетом. Ее часть попадает в печень, где она превращается в глюкозу – более универсальное «топливо». Такое вещество также может повысить уровень сахара в крови, но не настолько, как другие простые углеводы. Фруктоза превращается в жиры легче, чем глюкоза. Но ее главное преимущество состоит в том, что она слаще глюкозы и сахарозы в 2,5 и 1,7 раз соответственно. Поэтому данный углевод применяют вместо сахара с целью понижения калорийности пищи.

    Больше всего фруктозы содержится во фруктах, а именно:

    • винограде – 7,7 %;
    • яблоках – 5,5 %;
    • грушах – 5,2 %;
    • вишне и черешне – 4,5 %;
    • арбузах – 4,3 %;
    • черной смородине – 4,2 %;
    • малине – 3,9 %;
    • землянике – 2,4 %;
    • дыне – 2,0 %.

    В овощах фруктозы содержится меньше. Больше всего ее можно встретить в белокочанной капусте. Кроме того, фруктоза присутствует в меде – порядка 3,7 %. Достоверно известно, что она не вызывает кариеса.

    Галактоза. Рассматривая виды углеводов, мы уже познакомились с некоторыми простыми веществами, которые можно встретить в продуктах в свободном виде. Галактоза таковой не является. Она образует дисахарид с глюкозой, который называется лактозой (она же молочный сахар) – основной углевод молока и продуктов, полученных из него.

    В желудочно-кишечном тракте лактоза под действием фермента лактазы расщепляется на глюкозу и галактозу. У некоторых людей наблюдается непереносимость молока, связанная с нехваткой в организме лактазы. В нерасщепленном виде лактоза является хорошим питательным веществом для микрофлоры кишечника. В кисломолочных продуктах львиная доля этого вещества сбраживается до молочной кислоты. Благодаря этому люди, у которых наблюдается лактазная недостаточность, могут без неприятных последствий употреблять кисломолочные продукты. Кроме того, в них есть молочнокислые бактерии, которые подавляют деятельность микрофлоры кишечника и нивелируют последствия действия лактозы.

    Галактоза, образование которой происходит при распаде лактозы, в печени превращается в глюкозу. Если у человека недостает фермента, который отвечает за данный процесс, у него может развиться такое заболевание, как галактоземия. В коровьем молоке содержится 4,7 % лактозы, в твороге – 1,8-2,8 %, в сметане – 2,6-3,1 %, в кефире – 3,8-5,1 %, в йогуртах – порядка 3 %.

    Сахароза. На этом веществе мы закончим рассматривать простые виды углеводов. Сахароза – это дисахарид, который состоит из глюкозы и фруктозы. В сахаре содержится 99,5 % сахарозы. Сахар стремительно расщепляется желудочно-кишечным трактом. Глюкоза с фруктозой всасываются в кровь человека и служат не только источником энергии, но и самым важным предшественником гликогена в жире. Так как сахар представляет собой углеводы в чистом виде, не содержащие питательных веществ, многие его называют источником «пустых калорий».

    Свекла – самый богатый сахарозой продукт (8,6 %). Среди других растительных плодов можно выделить персик – 6 %, дыню – 5,9 %, сливу – 4,8 %, мандарин – 4,5 %, морковь – 3,5 %. В других овощах и фруктах содержание сахарозы колеблется в приделах 0,4-0,7 %.

    Пару слов стоит сказать также о мальтозе. Этот углевод состоит из двух молекул глюкозы. Мальтоза (солодовый сахар) содержится в меде, патоке, кондитерских изделиях, солоде и пиве.

    Сложные углеводы

    Теперь обсудим виды сложных углеводов. Таковыми называются все полисахариды, которые встречаются в рационе человека. За редким исключением среди них можно встретить полимеры глюкозы.

    Крахмал. Это основной углевод, перевариваемый человеком. На него приходится 80 % потребляемых с пищей углеводов. Крахмал содержится в картофеле и злаковых продуктах, а именно: крупе, муке, хлебе. Больше всего этого вещества можно встретить в рисе – 70 % и гречке – 60 %. Среди злаков самое меньшее содержание крахмала наблюдается в овсяной крупе – 49 %. В макаронных изделиях содержится до 68 % этого углевода. В пшеничном хлебе крахмала 30-50 %, а в ржаном – 33-49 %. Данный углевод также встречается в бобовых – 40-44 %. В картофеле содержится до 18 % крахмала, поэтому диетологи иногда относят его не к овощам, а к крахмалистым продуктам, как и зерновые с бобовыми.

    Инулин. Данный полисахарид является полимером фруктозы, который содержится в топинамбуре и в меньшей мере в других растениях. Продукты, содержащие инулин, назначают при диабете и его профилактике.

    Гликоген. Его часто называют «животным крахмалом». Он состоит из разветвленных молекул глюкозы и содержится в животных продуктах, а именно: печени – до 10 % и мясе – до 1 %.

    Заключение

    Сегодня мы рассмотрели основные виды углеводов и узнали, какие функции они выполняют. Теперь наш подход к питанию будет более осмысленным. Краткое резюме вышесказанного:

    • Углеводы – важный источник энергии для человека.
    • Их избыток так же плох, как и недостаток.
    • Виды углеводов: простые, сложные.
    • К простым относятся моно- и дисахариды, а к сложным – полисахариды.

    fb.ru

    Строение, свойства и функции углеводов

    Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

    Углеводы — одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85—90 % массы сухого вещества.

    Выделяют три группы углеводов:

    • моносахариды или простые сахара;
    • олигосахариды — соединения, состоящие из 2—10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).
    • полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

    Моносахариды (простые сахара)

    В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

    Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются прежде всего альдегидными или кетонными группировками, входящими в состав их молекул.

    Моносахариды хорошо растворяются в воде, сладкие на вкус.

    При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

    Циклические структуры пентоз и гексоз — обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

    Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

    Олигосахариды

    При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

    К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

    Полисахариды

    Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров — простых сахаров и их производных.

    Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором — гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

    Наиболее важными полисахаридами являются следующие.

    Целлюлоза — линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками β-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26—40 % целлюлозы.

    Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

    Крахмал и гликоген. Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

    Хитин образован молекулами β-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки.

    Хитин — основной структурный элемент покровов членистоногих и клеточных стенок грибов.

    Функции углеводов

    Энергетическая. Глюкоза является основным источником энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания (1 г углеводов при окислении высвобождает 17,6 кДж энергии).

    Структурная. Целлюлоза входит в состав клеточных оболочек растений; хитин является структурным компонентом покровов членистоногих и клеточных стенок грибов.

    Некоторые олигосахариды входят в состав цитоплазматической мембраны клетки (в виде гликопротеидов и гликолипидов) и образуют гликокаликс.

    Метаболическая. Пентозы участвуют в синтезе нуклеотидов (рибоза входит в состав нуклеотидов РНК, дезоксирибоза — в состав нуклеотидов ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозодифосфат является акцептором СO2 в темновой фазе фотосинтеза).

    Пентозы и гексозы участвуют в синтезе полисахаридов; в этой роли особенно важна глюкоза.

    jbio.ru

    Функции углеводов.

    Количество просмотров публикации Функции углеводов. — 661

    1. Структурная (строительная). Углеводы входят в состав многих элементов живых организмов, к примеру, клеточная стенка растительной клетки, гликокаликс эпителия кишечника человека.

    2. Сигнальная. Углеводно-белковые комплексы (гликопротеиды) образуют рецепторы (см. сигнальная функция белков).

    3. Защитная. Гликопротеиды соединительной ткани выполняют функцию химической защиты, противостоят гидролитическим ферментам.

    4. Энергетическая. При полном окислении 1 г углеводов выделяется 4,1 ккал или 17,2 кДж энергии.

    Эта функция последняя по перечислению, но главная по значению. Углеводы дают человеку более 60% энергии.

    Энергетика клетки.

    В химических реакциях при образовании связей между простыми молекулами энергия потребляется, а при разрыве выделяется.

    В процессе фотосинтеза у зелœеных растений энергия солнечного света переходит в энергию химических связей, возникающих между молекулами углекислого газа и воды. Образуется молекула глюкозы: CO2 + H2O + Q (энергия) = C6H12O6.

    Глюкоза является главным источником энергии для человека и большинства животных.

    Процесс усвоения этой энергии называют » окислительное фосфорилирование». Энергия (Q), выделяющаяся при окислении, сразу используется на фосфорилирование аденозиндифосфорной кислоты (АДФ):

    АДФ+Ф+Q (энергия)=АТФ

    Получается «универсальная энергетическая валюта» клетки аденозинтрифосфорная кислота (АТФ). Она может в любой момент быть использована на любую полезную организму работу или на согревание.

    АТФ®АДФ+Ф+Q (энергия)

    Процесс окисления глюкозы проходит в 2 этапа.

    1. Анаэробное (бескислородное) окисление, или гликолиз, происходит на гладкой эндоплазматической сети клетки. В результате этого глюкоза оказывается разорванной на 2 части, а выделившейся энергии достаточно для синтеза двух молекул АТФ.

    2. Аэробное (кислородное) окисление. Две части от глюкозы (2 молекулы пировиноградной кислоты) при наличии кислорода продолжают ряд окислительных реакций. Этот этап протекает на митохондриях и приводит к дальнейшему разрыву молекул и выделœению энергии.

    Результатом второго этапа окисления одной молекулы глюкозы является образование 6 молекул углекислого газа, 6 молекул воды и энергии, которой достаточно для синтеза 36 молекул АТФ.

    В качестве субстратов для окисления на втором этапе могут использоваться не только молекулы, полученные из глюкозы, но и молекулы, полученные в результате окисления липидов, белков, спиртов и других энергоемких соединœений.

    Активная форма уксусной кислоты — А-КоА ( ацетил коэнзим А, или ацетил кофермент А) — это промежуточный продукт окисления всœех этих веществ (глюкозы, аминокислот, жирных кислот и других).

    А-КоА является точкой пересечения углеводного, белкового и липидного обменов.

    При избытке глюкозы и других энергонесущих субстратов организм начинает их депонировать. В этом случае, глюкоза окисляется по обычному пути до молочной и пировиноградной кислоты, затем до А-КоА. Далее, А-КоА становится базой для синтеза молекулы жирных кислот и жиров, которые депонируются в подкожной жировой клетчатке. Наоборот, при недостатке глюкозы, ее синтезируют из белков и жиров через А-КоА (глюконеогенез).

    При крайне важно сти могут пополняться и запасы заменимых аминокислот для строительства некоторых белков.

     
     
    Схема связи углеводного, липидного, белкового и энергетического метаболизма

    referatwork.ru

    Функция простых углеводов в клетке | Рекомендации специалистов

    » Рекомендации специалистов

    §9. Углеводы и их роль в жизнедеятельности клетки

    1. Какие вещества, относящиеся к углеводам, вам известны?

    Ответ. Углеводы (сахариды) — общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Углеводы делятся на две группы: простые и сложные. Простые углеводы — глюкоза и фруктоза, дисахарид – сахароза, полисахариды – крахмал и целлюлоза

    2. Какую роль играют углеводы в живом организме?

    Ответ. Углеводы в живом организме выполняют ряд функций: энергетическую, строительную, защитную, запасающую функции.

    Вопросы после §9

    1. Какие углеводы называют моно-, олиго– и полисахаридами?

    Ответ. Моносахариды (от греч. monos – один) – бесцветные кристаллические вещества, легко растворимые в воде и имеющие сладкий вкус. Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза. Рибоза входит в состав РНК, АТФ, витаминов группы В, ряда ферментов. Дезоксирибоза входит в состав ДНК. Глюкоза (виноградный сахар) является мономером полисахаридов (крахмала, гликогена, целлюлозы). Она есть в клетках всех организмов. Фруктоза входит в состав олигосахаридов, например сахарозы. В свободном виде содержится в клетках растений. Галактоза также входит в состав некоторых олигосахаридов, например лактозы.

    Олигосахариды (от греч. oligos – немного) образованы двумя (тогда их называют дисахариды) или несколькими моносахаридами, связанными ковалентно друг с другом с помощью гликозидной связи. Большинство олигосахаридов растворимы в воде и имеют сладкий вкус. Из олигосахаридов наиболее широко распространены дисахариды: сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар).

    Полисахариды (от греч. poly – много) являются полимерами и состоят из неопределённо большого (до нескольких сотен или тысяч) числа остатков молекул моносахаридов, соединённых ковалентными связями. К ним относятся крахмал, гликоген, целлюлоза, хитин и др. Интересно, что крахмал, гликоген и целлюлоза, играющие важную роль в живых организмах, построены из мономеров глюкозы, но связи в их молекулах различны. Кроме того, у целлюлозы цепи не ветвятся, а у гликогена они ветвятся сильнее, чем у крахмала.

    2. Какие функции выполняют углеводы в живых организмах?

    Ответ. Основная функция углеводов – энергетическая. При их ферментативном расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма. При полном расщеплении 1 г углеводов освобождается 17,6 кДж.

    Углеводы выполняют запасающую функцию. При избытке они накапливаются в клетке в качестве запасающих веществ (крахмал, гликоген) и при необходимости используются организмом как источник энергии. Усиленное расщепление углеводов происходит, например, при прорастании семян, интенсивной мышечной работе, длительном голодании.

    Очень важной является структурная, или строительная, функция углеводов. Они используются в качестве строительного материала. Так, целлюлоза благодаря особому строению нерастворима в воде и обладает высокой прочностью. В среднем 20–40 % материала клеточных стенок растений составляет целлюлоза, а волокна хлопка – почти чистая целлюлоза, и именно поэтому они используются для изготовления тканей.

    Хитин входит в состав клеточных стенок некоторых простейших и грибов. В качестве важного компонента наружного скелета хитин встречается у отдельных групп животных, например у членистоногих.

    Углеводы выполняют защитную функцию. Так, камеди (смолы, выделяющиеся при повреждении стволов и веток растений, например слив, вишен), препятствующие проникновению в раны болезнетворных микроорганизмов, являются производными моносахаридов.

    Твердые клеточные стенки одноклеточных и хитиновые покровы членистоногих, в состав которых входят углеводы, также выполняют защитные функции.

    3. Почему углеводы считаются главными источниками энергии в клетке?

    Ответ. Углеводы считаются главными источниками энергии в клетке потому, что при их расщеплении выделяется достаточно количества энергии. Углеводы доступны организму. Расщепление углеводов происходит быстрее, чем остальных органических веществ.

    ► Обычно в клетке животных организмов содержится около 1 % углеводов, в клетках печени их содержание доходит до 5 %, а в растительных клетках – до 90 %. Подумайте и объясните почему.

    Ответ. В растительных клетках — большой процент углеводов, т. Так как растения автотрофы и в их клетках постоянно идёт процесс фотосинтеза углеводов.

    В печени животных более высокое содержание углеводов, т. к. в её клетках находится запас глюкозы в виде гликогена.

    ► Углеводы являются производными многоатомных спиртов и состоят из углерода, водорода и кислорода. Химики определяют эти соединения как многоатомные оксиальдегиды или многоатомные оксикетоны. Название «углеводы» хотя и является устаревшим, но и по сей день широко используется, в том числе и в научной литературе. Своё название этот класс соединений получил потому, что у большинства из них соотношение водорода и кислорода в молекуле такое же, как и в воде. Общая формула углеводов Cn(h30)m, где n не меньше 3. Однако не все соединения, относящиеся к классу углеводов, соответствуют данной формуле.

    Выясните, какие это соединения.

    Ответ. Общая формула углеводов Сn(h3O)m. Однако с развитием химии углеводов обнаружены соединения, состав которых не отвечает приведенной общей формуле,но обладающие свойствами веществ своего класса(например,C5h20O4-Дезоксирибоза). Еще одним примером может служить молочная кислота С3Н6 О3.

    http://resheba.com/gdz/biologija/10-klass/kamenskij/9

    Лекция № 2. Строение и функции углеводов и липидов

    Строение, примеры и функции углеводов

    Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой Cn (H2 O)m (n и m 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

    Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

    Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С5 Н10 О4 ) отличается от рибозы (С5 Н10 О5 ) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

    Глюкоза, или виноградный сахар6 Н12 О6 ), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

    Глюкоза — это:
    1. один из самых распространенных моносахаридов,
    2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
    3. мономер многих олигосахаридов и полисахаридов,
    4. необходимый компонент крови.

    Фруктоза, или фруктовый сахар. относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

    Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной .

    Сахароза, или тростниковый, или свекловичный сахар. — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар ). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

    Мальтоза, или солодовый сахар. — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

    Лактоза, или молочный сахар. — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2–8,5%).

    Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

    Крахмал6 Н10 О5 )n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

    Гликоген6 Н10 О5 )n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

    Целлюлоза6 Н10 О5 )n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

    Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

    Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

    Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

    Функции углеводов

    Слизи предохраняют кишечник, бронхи от механических повреждений. Гепарин предотвращает свертывание крови у животных и человека.

    Строение и функции липидов

    Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам. говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

    Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок –СН2 –. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (–СН=СН–), такую жирную кислоту называют ненасыщенной. Если жирная кислота не имеет двойных связей, ее называют насыщенной. При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

    Если в триглицеридах преобладают насыщенные жирные кислоты. то при 20 С они — твердые; их называют жирами. они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты. то при 20 С они — жидкие; их называют маслами. они характерны для растительных клеток.

    1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
    4 — гидрофильная головка; 5 — гидрофобный хвост.

    Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

    К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

    Сложные липиды. К ним относят фосфолипиды, гликолипиды, липопротеины и др.

    Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

    Гликолипиды — см. выше.

    Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

    Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

    Функции липидов

    http://licey.net/free/6-biologiya/21-lekcii_pbschei_biologii/stages/256-lekciya__2_stroenie_i_funkcii_uglevodov_i_lipidov.html

    Основная функция углеводов в клетке

    Питательные вещества в углеводах – это простой и доступный источник энергии для организма. Сложные всегда полезнее простых углеводов, способствующих отложению жировой клетчатки под кожей.Моносахаридами, олигосахаридами и полисахаридами называют основные углеводы. Моносахариды — объединение сладкой рибозы, дезоксирибозы, глюкозы, фруктозы, галактозы. К полисахаридам относятся растворимая и сладкая сахароза (сахар из тростника), мальтоза (сладкий солод), лактоза (сахарное молочко) К полисахаридам — остаточные молекулы моносахаридов, имеющие ковалентные связи. Они находятся в крахмале, целлюлозе, хитине, крахмале.

    Углеводы для работы клетки. Накапливание энергии для бесперебойной работы всего организма – основная функция углеводов в клетке. Во время сгорания (окисления) или при создании анаэробных условий (без поступления кислорода) углерод высвобождает энергию для клеток. Клеточное дыхание обеспечивает глюкоза. Биологические процессы в организме невозможны без фруктозы. Прорастающие семена накапливают мальтозу, а фотосинтез обеспечивается сахарозой. Без этих простых усвояемых энергетических источников для клеток не состоялся бы обмен молекул белков и жира, не работали бы секреты слюнных и желез, что образуют слизь и иные важные соединения.

    Глюкоза из плодов и ягод необходима для работы мозга. Печень нуждается в ней для бесперебойной деятельности и гликогена. Для усвоения фруктозы организму не нужно вырабатывать дополнительно инсулин. Это важно для диабетиков. Фруктоза нужна для снижения калорийности пищи и содержится меде, фруктах и ягодах. Лактоза — в молочных продуктах, мальтоза — в меде, экстракте из солода (патоке), проросших зернах. Сахарозу содержат сладкие фрукты и овощи: абрикосы, персики, слива, свекла, морковь, а также сахарная свекла и тростник, из которых получают сахар и добавляют в кондитерские изделия, конфеты и шоколад, выпечку, сладкие напитки.

    Запасающая функция углеводов. Избыток углеводов накапливается в клетках и способствует отложению жира, особенно сахароза. Поставщиком энергии становится крахмал с гликогеном. Они возмещают недостающую энергию в клетке во время мышечной работы, длительного голода. В этом заключается запасающая функция углеводов. Источники крахмала – изделия из муки, крупы, бобовые и картофель. Продукты с крахмалом организм переваривает медленно, где расщепляет его до глюкозы. Манка и рис усваиваются легче. При употреблении фруктов и ягод печень насыщается гликогеном.

    Роль непредельных (сложных) углеводов. Непредельные углеводы отвечают за обмен веществ. При их отсутствии или недостатке возмещать недостающую энергию приходится жирам и белкам, нарушая солевой обмен и деятельность почек, отравляя мозговые клетки. Непредельные углеводы способствуют развитию полезных бактерий и стимулируют перистальтику кишечника, выводят жир, замедляют всасывание сахара, снижают уровень холестерина, устраняют запоры и геморрой, снижают дозу инсулина диабетикам.

    Они находятся в клетчатке: целлюлозе, гемицеллюлозе, лигнине, камеди, пектине. Сложные углеводы содержат овощи, фрукты, ягоды, цитрусовые, пшеничные отруби, овес. Аннотация . Основная функция углеводов в клетке – накапливание энергии для организма. Запасающая функция углеводов – накапливание источник энергии. Сложные непредельные углеводы – развивают полезные бактерии и стимулируют работу кишечника.

    http://uznay-kak.ru/zdorove-i-uhod/dietyi/osnovnaya-funktsiya-uglevodov-v-kletke

    Комментариев пока нет!


    www.formula-zdorovja.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *