Какой углевод выполняет запасающую функцию – Какой углевод выполняет запасающую функцию в растительных клетках а) крахмал б) глюкоза в) гликоген г) целлюлоза

    функции углеводов в клетке и в организме

    Углево&#769;ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода» , оно было впервые предложено К. Шмидтом 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(h3O)y, формально являясь соединениями углерода и воды. Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных. В живых организмах углеводы выполняют следующие функции: Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.) , состоящие из клеточных стенок мёртвых клеток. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК) . Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов. <a rel=»nofollow» href=»http://ru.wikipedia.org/wiki/Углеводы» target=»_blank»>http://ru.wikipedia.org/wiki/Углеводы</a> Удачи Вам!

    Спасибо! Очень помогло

    1) запасная функция (форма запасания энергии) — крахмал, гликоген 2) защитная функция гиалуроновая кислота, хондроитинсульфат — находятся в жидкости, смазывающей поверхность суставов, гепарин — препятствует свертыванию крови, различные слизи — капсулы бактерий, слизистые оболочки нашего организма 3) энергетическая — глюкоза — один из основных источников энергии, поступающих с пищей 4) рецепторная — углеводы в составе белков (гликопротеины) являются средством общения клетки с окружающей средой — рецепторами. 5) структурная — целлюлоза создает скелет для растительной клетки, хитин — каркас для крабов, раков, насекомых.

    touch.otvet.mail.ru

    Функции углеводов в организме | krok8.com

    Содержание:

    Углеводы, как и другие макронутриенты (жиры и белки), не ограничиваются выполнением какой-то одной функции в организме человека. Помимо того, что обеспечение энергией основная функциональная роль углеводов, они так же необходимы для нормальной деятельности сердца, печени, мышц и центральной нервной системы. Являются важной составляющей в регуляции обмена белков и жиров.

    Основные биологические функции углеводов, для чего они необходимы в организме

    1. Энергетическая функция.
      Главная функция углеводов в организме человека. Являются основным энергетическим источником для всех видов работ, происходящих в клетках. При расщеплении углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма и все энергетические расходы мозга (мозг поглощает около 70% глюкозы, выделяемой печенью). При окислении 1 г углеводов выделяется 17,6 кДж энергии. В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена.
    2. Пластическая (строительная) функция.
      Углеводы (рибоза, дезоксирибоза) используются для построения АДФ, АТФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.
    3. Запасающая функция.
      Углеводы запасаются (накапливаются) в скелетных мышцах (до 2%), печени и других тканях в виде гликогена. При полноценном питании в печени может накапливаться до 10% гликогена, а при неблагоприятных условиях его содержание может снижаться до 0,2% массы печени.
    4. Защитная функция.
      Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
    5. Регуляторная функция.
      Входят в состав мембранных рецепторов гликопротеидов. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови. Клетчатка из пищи не расщепляется (переваривается) в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

    Далее приведены основные группы и виды углеводов.

    Группы углеводов

    • Простые (быстрые) углеводы
      Различают два вида сахаров: моносахариды и дисахариды. Моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза. Дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой. Быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом.
    • Сложные (медленные) углеводы
      Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К данному виду углеводов относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи. Постепенно повышают содержание глюкозы и имеют низкий гликемический индекс.
    • Неусваиваемые (волокнистые)
      Клетчатка (пищевые волокна), не обеспечивают организм энергией, но играет огромную роль в его жизнедеятельности. Содержится главным образом в растительных продуктах с низким или очень низким содержанием сахара. Следует заметить, что клетчатка замедляет усвоение углеводов, белков и жиров (может быть полезным при похудении). Является источником питания для полезных бактерий кишечника (микробиом)

    Виды углеводов

    Моносахариды
    • Глюкоза
      Моносахарид, бесцветное кристаллическое вещество сладкого вкуса, содержится практически в каждой углеводной цепочке.
    • Фруктоза
      Фруктовый сахар в свободном виде присутствует почти во всех сладких ягодах и плодах, самый сладкий из сахаров.
    • Галактоза
      Не встречается в свободной форме; в связанном с глюкозой виде он образует лактозу, молочный сахар.
    Дисахариды
    • Сахароза
      Дисахарид, состоящий из комбинации фруктозы и глюкозы, имеет высокую растворимость. Попадая в кишечник, распадается на данные компоненты, которые затем всасываются в кровь.
    • Лактоза
      Молочный сахар, углевод группы дисахаридов, содержится в молоке и молочных продуктах.
    • Мальтоза
      Солодовый сахар, легко усваивается организмом человека. Образуется в результате объединения двух молекул глюкозы. Мальтоза возникает в результате расщепления крахмалов в процессе пищеварения.
    Полисахариды
    • Крахмал
      Порошок белого цвета, нерастворимый в холодной воде. Крахмал является наиболее распространенным углеводом в рационе человека и содержится во многих основных продуктах питания.
    • Клетчатка
      Сложные углеводы, представляющие собой жесткие растительные структуры. Составная часть растительной пищи, которая не переваривается в организме человека, но играет огромную роль в его жизнедеятельности и пищеварении.
    • Мальтодекстрин
      Порошок белого или кремового цвета, со сладковатым вкусом, хорошо растворим в воде. Представляет собой промежуточный продукт ферментного расщепления растительного крахмала, в результате чего молекулы крахмала делятся на фрагменты – декстрины.
    • Гликоген
      Полисахарид, образованный остатками глюкозы; основной запасной углевод, нигде кроме организма не встречается. Гликоген, образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы в организме человека.

    Основные углеводные источники для организма

    Главными источниками углеводов из пищи являются: фрукты, ягоды и другие плоды, из приготовленных – хлеб, макароны, крупы, сладости. Картофель содержит углеводы в виде крахмала и пищевых волокон. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

     

    Источники: ☰
    1. Carbohydrates

     

    Все материалы носят ознакомительный характер. [Отказ от ответственности krok8.com]

    krok8.com

    Контрольная работа по биологии 10 класс “Молекулярный уровень”


    Контрольная работа по биологии 10 класс

    Составитель: Артемьева Катерина Алексеевна, учитель биологии МАОУ «СОШ № 10» г. Стерлитамак

    I семестр

    Часть А.

    1. Укажите вещество, которое не входит в состав нуклеотидов:

    А) сахар Б) аминокислота В) азотистое основание Г) остаток фосфорной кислоты

    2. Какой углевод выполняет запасающую функцию в растительных клетках?

    А) крахмал Б) глюкоза В) гликоген Г) целлюлоза

    3.Что представляют собой соединения, образованные из жирных кислот и многоатомного спирта глицерина? А) А)липиды Б) белки В) углеводы Г) нуклеотиды

    4. Какое азотистое основание не входит в состав нуклеотидов РНК?

    А) гуанин Б) цитозин В) тимин Г) урацил

    5.Сколько типов аминокислот являются мономерами белка?

    А) 4 Б) 20 В) 60 Г) более 100

    6. Что такое первичная структура белка?

    А) регулярная укладка звеньев белковой молекулы за счет образования между ними водородных связей

    Б) последовательность аминокислот в полипептидной цепи

    В) трехмерная пространственная конфигурация белковой молекулы, образованная за счет ковалентных связей и гидрофобных взаимодействий

    Г) объединение нескольких полипептидных цепей в агрегат

    7. Из каких мономеров состоят нуклеиновые кислоты?

    А) из нуклеотидов Б) из моносахаридов В) из аминокислот Г) из фосфолипидов

    8. Какое азотистое основание входит в состав АТФ?

    А) тимин Б) урацил В) гуанин Г) аденин

    9. Какое вещество является мономером гликогена?

    А) нуклеотид Б) глюкоза В) аминокислота Г) фосфолипид

    10. Что такое вторичная структура белка?

    А) глобула Б) линейная последовательность аминокислот В) спираль Г) несколько глобул

    11. Какой из химических элементов одновременно входит в состав костной ткани и нуклеиновых кислот?

    А) калий Б) фосфор В) кальций Г) цинк

    12. Клетки какого организма наиболее богаты углеводами?

    А) клетки мышц человека Б) клетки клубня картофеля

    В) клетки кожицы лука Г) подкожная клетчатка медведя

    13. В каком отделе пищеварительной системы начинается расщепление углеводов?

    А) в желудке Б) в тонком кишечнике В) в полости рта Г) в двенадцатиперстной кишке

    14. Изменяемыми частями аминокислот является:

    А) аминогруппа и карбоксильная группа Б) радикал В) карбоксильная группа Г) радикал и карбоксильная группа

    15. Молекулы белков отличаются друг от друга:

    А) последовательностью чередования аминокислот Б) количеством аминокислот в молекуле

    В) формой третичной структуры Г) всеми указанными особенностями

    16. В процессе биохимических реакций ферменты:

    А) ускоряют реакции и сами при этом не изменяются

    Б) ускоряют реакции и изменяются в результате реакции

    В) замедляют химические реакции, не изменяясь

    Г) замедляют химические реакции, изменяясь

    17. Для лечения тяжелых форм сахарного диабета больным необходимо вводить:

    А) гемоглобин Б) инсулин В) антитела Г) гликоген

    Часть В 1. Установите соответствие между особенностями и молекулами сложных органических веществ, для которых они характерны.

    ОСОБЕННОСТИ

    МОЛЕКУЛЫ

    A)полимер, который состоит из двух спирально закрученных цепочек

    Б) полимер, который состоит из одной линей­ной цепочки

    B)в состав нуклеотидов входят азотистые основания — аденин, тимин, гуанин и цитозин

    Г) в состав нуклеотидов входят азотистые основания — аденин, урацил, гуанин и цитозин

    Д) в состав нуклеотида входит пентоза-рибоза

    Е) В состав нуклеотида входит пентоза-дезоксирибоза

    1)РНК

    2) ДНК

    В2. К биополимерам относятся

    1)белки 2)минеральные соли 3)полисахариды 4)вода 5)нуклеиновые кислоты 6)полиэтилен

    В 3. Какие функции в клетке выполняют углеводы? 1) энергетическую 2)каталитическую 3)запасающую 4)гормональную 5)строительную 6)транспортную

    Часть С Если цепь ДНК содержит 28% нуклеотида А, то чему должно равняться количество нуклеотида Г?

    Ответы:

    1 – Б

    2 – В

    3 – А

    4 – В

    5- Б

    6 –Б

    7 – А

    8 – Г

    9 — Б

    10 – Б

    11 – Б

    12 – Б

    13 – В

    14 – Б

    15 – Г

    16 – А

    17 – Б

    1 – БГД

    2 — АВЕ

    С1. 22%

    www.school-essays.info

    Какой углевод выполняет регуляторную функцию?

    Углеводы являются одним из самых важных и самым распространенным на планете классом органических соединений. Роль углеводов в целом можно описать, как своеобразный мост между органическими и неорганическими соединениями. Если рассматривать роль углеводов в жизнедеятельности человека, что следует выделить их участие в регулировании биохимических процессов организма, способствование накоплению и выделению энергии, а также огромное влияние на структуру и пластичность живых клеток.

    Влияние углеводов на функционирование и нормализацию всех жизненных процессов организма человека велико. Самая важная роль углеводов в организме — нормализация обмена белков и жиров. В паре с белками, углеводы образуют важные для жизнедеятельности человека соединения, гормоны и ферменты, а также участвуют в секреторных образованиях желез — при выделении слюны, желудочного сока и прочего.

    Углеводы выполняют в организме человека различные биологические функции:

    * Энергетическая функция. При окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал) . В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена.

    * Пластическая функция, то есть участвуют в построении различных клеточных структур (например, клеточных стенок растений) .

    * Запас питательных веществ. Углеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена. Запасы гликогена зависят от массы тела, функционального состояния организма, характера питания. При мышечной деятельности запасы гликогена существенно снижаются, а в период отдыха после работы восстанавливаются в основном за счет продуктов питания. Эта функция углеводов играет очень большое значение в питании. Систематическая мышечная деятельность приводит к увеличению запасов гликогена, что повышает энергетические возможности организма.

    * Специфическая функция. Отдельные углеводы участвуют в обеспечении специфичности групп крови, выполняют роль антикоагулянтов, являются рецепторами ряда гормонов или фармакологических веществ, оказывают противоопухолевое действие.

    * Защитная функция. Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.

    iotvet.com

    Функции углеводов | Химическая энциклопедия

    В живых организмах углеводы выполняют различные функции, но основными являются энергетическая и строительная.

    Энергетическая функция состоит в том, что углеводы под влиянием ферментов легко расщепляются и окисляются с выделением энергии. При полном окислении 1 г углеводов высвобождается 17,6 кДж энергии. Конечные продукты окисления углеводов – углекислый газ и вода.

    Значительная роль углеводов в энергетическом балансе живых организмов связана с их способностью расщепляться как при наличии кислорода, так и без него. Это имеет важнейшее значение для живых организмов, живущих в условиях дефицита кислорода. Резервом глюкозы являются полисахариды (крахмал и гликоген).

    Структурная (строительная) функция углеводов заключается в том, что они используются в качестве строительного материала. Оболочки клеток растений в среднем на 20-40 % состоят из целлюлозы, которая обладает высокой прочностью. Поэтому оболочки растительных клеток надежно защищают внутриклеточное содержимое и поддерживают форму клеток. Хитин является компонентом внешнего скелета членистоногих и клеточных оболочек некоторых грибов и протистов.

    Некоторые олигосахариды входят в состав цитоплазматической мембраны клеток животных и образуют надмембранный комплекс – гликокаликс. Углеводные компоненты цитоплазматической мембраны выполняют рецепторную функцию: они воспринимают сигналы из окружающей среды и передают их в клетку.

    Метаболическая функция состоит в том, что моносахариды являются основой для синтеза многих органических веществ в клетках организмов – полисахаридов, нуклеотидов, спиртов, аминокислот и др.

    Запасающая функция заключается в том, что полисахариды являются запасными питательными веществами всех организмов, играя роль важнейших поставщиков энергии. Запасным питательным веществом у растений является крахмал, у животных и грибов – гликоген. В корнях и клубнях некоторых растений, например, георгинов, запасается инулин (полимер фруктозы).

    Углеводы выполняют и защитную функцию. Так, камеди (смолы, выделяющиеся при повреждении деревьев, например, вишен, слив) являются производными моносахаридов. Они препятствуют проникновению в раны болезнетворных микроорганизмов. Твердые клеточные оболочки протистов, грибов и покровы членистоногих, в состав которых входит хитин, тоже выполняют защитную функцию. Вам необходимо включить JavaScript, чтобы проголосовать

    abouthist.net

    Углеводы их функции и классификация

    Углеводы играют первостепенную роль в обеспечении энергетики всего организма, они принимают участие в метаболизме всех питательных веществ. Представляют собой органические соединения, состоящие из углерода, водорода и кислорода. Углеводы, в следствии легкодоступности и быстроты усвоения, являются основным источником энергии для организма.

    В организм человека углеводы могут поступать с пищей (крупы, овощи, бобовые культуры, фрукты и т.д.), а также вырабатываться из жиров и некоторых аминокислот.

    Классификация углеводов

    Структурно углеводы подразделяются на следующие группы:

    Простые углеводы. К ним относят глюкозу, галактозу и фруктозу (моносахариды), а также сахарозу, лактозу и мальтозу (дисахариды).

    Глюкоза – главный поставщик энергии для мозга. Она содержится в плодах и ягодах и необходима для снабжения энергией и образования в печени гликогена.

    Фруктоза почти не требует для своего усвоения гормона инсулина, что позволяет использовать ее при сахарном диабете, но в умеренных количествах.

    Галактоза в продуктах в свободном виде не встречается. Получается при расщеплении лактозы.

    Сахароза содержится в сахаре и сладостях. При попадании в организм расщепляется на более составляющие: глюкозу и фруктозу.

    Лактоза – углевод, содержащийся в молочных продуктах. При врожденном или приобретенном дефиците фермента лактозы в кишечнике нарушается расщепление лактозы на глюкозу и галактозу, что известно как непереносимость молочных продуктов. В кисломолочных продуктах лактозы меньше, чем в молоке, так как при сквашивании молока из лактозы образуется молочная кислота.

    Мальтоза – промежуточный продукт расщепления крахмала пищеварительными ферментами. В дальнейшем мальтоза расщепляется до глюкозы. В свободном виде она содержится в меде, солоде (отсюда второе название – солодовый сахар) и пиве.

    Сложные углеводы. К ним относят крахмал и гликоген (перевариваемы углеводы), а также клетчатку, пектины и гемицеллюлозу.

    Крахмал – в питании составляет до 80% всех углеводов. Его основные источники: хлеб и хлебобулочные изделия, крупы, бобовые, рис и картофель. Крахмал, относительно медленно переваривается, расщепляясь до глюкозы.

    Гликоген, его еще называют «животный крахмал», — полисахарид, который состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10% и в мышечной ткани – 0,3-1%).

    Клетчатка – это сложный углевод, входящий в состав оболочек растительных клеток. В организме клетчатка практически не переваривается, лишь незначительная часть может подвергнуться под влиянием находящихся в кишечнике микроорганизмов.

    Клетчатку, вместе с пектинами, лигнинами и гемицеллюлозой, называют или балластными веществами. Они улучшают работу пищеварительной системы, являясь профилактикой многих заболеваний. Пектины и гемицеллюлоза обладают гигроскопичными свойствами, что позволяет им сорбировать и увлекать с собой избыток холестерина, аммиак, желчные пигменты и другие вредные вещества. Еще одним важным достоинством пищевых волокон является их помощь в профилактике ожирения. Не обладая высокой энергетической ценностью, овощи из-за большого количества пищевых волокон способствуют раннему чувству насыщения.

    В большом количестве пищевые волокна содержится в хлебе грубого помола, отрубях, овощах и фруктах.

    Гликемический индекс

    Некоторые углеводы (простые) усваиваются организмом практически мгновенно, что приводит к резкому повышению уровня глюкозы в крови, другие (сложные) усваиваются постепенно и не дают резкого повышения уровня сахара в крови. Благодаря замедленному усвоению, употребление продуктов, содержащих такие углеводы, обеспечивает более продолжительное чувство насыщения. Это их свойство используют в диетологии, для похудения.

    А чтобы оценить скорость того или иного продукта расщепляться в организме применяют гликемический индекс (ГИ). Этот показатель, определяет с какой скоростью продукт расщепляется в организме и преобразуется в глюкозу. Чем быстрее происходит расщепление продукта, тем выше его гликемический индекс (ГИ). За эталон была взята глюкоза, чей гликемический индекс (ГИ) равен 100. Все остальные показатели сравниваются с гликемическим индексом (ГИ) глюкозы. Все значения ГИ в различных продуктах питания можно посмотреть в специальной таблице гликемического индекса продуктов.

    Функции углеводов в организме

    В организме углеводы выполняют следующие функции:

    • Являются основным источником энергии в организме.

    • Обеспечивают все энергетические расходы мозга (мозг поглощает около 70% глюкозы, выделяемой печенью)

    • Участвуют в синтезе молекул АТФ, ДНК и РНК.

    • Регулируют обмен белков и жиров.

    • В комплексе с белками они образуют некоторые ферменты и гормоны, секреты слюнных и других образующих слизь желез, а также другие соединения.

    • Пищевые волокна улучшают работу пищеварительной системы и выводят из организма вредные вещества, пектины стимулируют пищеварение.

    9

    Липиды — жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Дикими принадлежат к простейшим биологическим молекулам.

    В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре жиры называют триацилглицеролами.

    Когда жиры гидролизуются (т.е. расщепляются из-за внедрения H+ и OH в эфирные связи), они распадаются на глицерол и свободные высшие карбоновые кислоты, каждая из которых содержит четное число атомов углерода.

    Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Среди предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят:

    • пальмитиновая СН3 — (СН2)14 — СООН или С15Н31СООН;

    • стеариновая СН3 — (СН2)16 — СООН или С17Н35СООН;

    • арахиновая СН3 — (СН2)18 — СООН или С19Н39СООН;

    среди непредельных:

    • олеиновая СН3 — (СН2)7 — СН = СН — (СН2)7 — СООН или С17Н33СООН;

    • линолевая СН3 — (СН2)4 — СН = СН — СН2 — СН — (СН2)7 — СООН или С17Н31СООН;

    • линоленовая СН3 — СН2 — СН = СН — СН2 — СН = СН — СН2 — СН = СН — (СН2)7 — СООН или С17Н29СООН.

    Степень ненасыщенности и длина цепей высших карбоновых кислот (т.е. число атомов углерода) определяет физические свойства того или иного жира.

    Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества. И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре представляют собой твердые вещества. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, превращается в однородное мазеобразное арахисовое масло, а подсолнечное масло — в маргарин. В организме животных, живущих в холодном климате, например у рыб арктических морей, обычно содержится больше ненасыщенных триацилглицеролов, чем у обитателей южных широт. По этой причине тело их остается гибким и при низких температурах.

    Различают:

    Фосфолипиды — амфифильные соединения, т. е. имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны (растворимы в воде), а неполярные хвостовые группы гидрофобны (нерастворимы в воде).

    Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

    Воска — сложные эфиры адноатомных (с одной гидроксильной группой) высокомолекулярных (имеющих длинный углеродный скелет) спиртов и высших карбоновых кислот.

    Еще одну группу липидов составляют стероиды. Эти вещества построены на основе спирта холестерола. Стероиды очень плохо растворимы в воде и не содержат высших карбоновых кислот.

    К ним относятся желчные кислоты, холестерол, половые гормоны, витамин D и др.

    К стероидам близки терпены (ростовые вещества растений — гиббереллины; фитол, входящий в состав хлорофилла каротиноиды — фотосинтетичские пигменты; эфирные масла растений — ментол, камфора и др.).

    Липиды могут образовывать комплексы с другими биологическими молекулами.

    Липопротеины — сложные образования, содержащие триацилглицеролы, холестерол и белки, причем последние не имеют ковалентных связей с липидами.

    Гликолипиды — это группа липидов, построенных на основе спирта сфингозина и содержащих кроме остатка высших карбоновых кислот одну или несколько молекул сахаров (чаще всего глюкозу или галактозу).

    Функции липидов

    Структурная. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

    Энергетическая. При окислении 1 г жиров высвобождается 38,9 кДж энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию. Семена многих растений (кокосовая пальма, клещевина, подсолнечник, соя, рапс и др.) служат сырьем для получения масла промышленным способом.

    Защитная и теплоизоляционная. Накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.

    Смазывающая и водоотталкивающая. Воска покрывают кожу, шерсть, перья, делают их более эластичными и предохраняют от влаги. Восковым налетом покрыты листья и плоды растений; воск используется пчелами в строительстве сот.

    Регуляторная. Многие гормоны являются производными холестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон).

    Метаболическая. Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

    Липиды являются источником метаболической воды. При окислении жира образуется примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно на эти цели. Необходимую для жизнедеятельности воду медведи, сурки и другие животные в спячке получают в результате окисления жира.

    10

    Химический состав

    Клеточная стенка растительных клеток состоит, главным образом, из полисахаридов. Все компоненты, входящие в состав клеточной стенки, можно разделить на 4 группы:

    Структурные компоненты, представленные целлюлозой у большинства автотрофных растений.

    Компоненты матрикса, т. е. основного вещества, наполнителя оболочки – гемицеллюлозы, белки, липиды.

    Компоненты, инкрустирующие клеточную стенку, (т.е. откладывающиеся и выстилающие ее изнутри) – лигнин и суберин.

    Компоненты, адкрустирующие стенку, т.е. откладывающиеся на ее поверхности, — кутин, воск.

    Основной структурный компонент оболочки – целлюлоза представлена неразветвленными полимерными молекулами, состоящими из 1000-11000 остатков  — D глюкозы, соединенных между собой гликозидными связями. Наличие гликозидных связей создает возможность образования поперечных стивок. Благодаря этому, длинные и тонкие молекулы целлюлозы объединяются в элементарные фибриллы или мицеллы. Каждая мицелла состоит из 60-100 параллельно расположенных цепей целлюлозы. Мицеллы сотнями группируются в мицеллярные ряды и составляют микрофибриллы диаметром 10-15 нм. Целлюлоза обладает кристаллическими свойствами благодаря упорядоченному расположению мицелл в микрофибриллах. Микрофибриллы, в свою очередь перевиваются между собой как пряди в канате и объединяются в макрофибриллы. Макрофибриллы имеют толщину около 0,5 мкм. и могут достигать в длину 4мкм. Целлюлоза не обладает ни кислыми, ни щелочными свойствами. По отношению к повышенным температурам она достаточно стойка и может быть нагрета без разложения до температуры 200о С.. Многие из важных свойств целлюлозы обусловлены ее высокой стойкостью по отношению к ферментам и химическим реагентам. Она не растворима в воде, в спирте, в эфире и в других нейтральных растворителях; не растворяется в кислотах и щелочах. Целлюлоза, пожалуй, самый распространенный вид органических макромолекул на Земле.

    Микрофибриллы оболочки погружены в аморфный пластичный гель – матрикс. Матрикс является наполнителем оболочки. В состав матрикса оболочек растений входят гетерогенные группы полисахаридов, называемые гемицеллюлозами и пектиновыми веществами.

    Гемицеллюлозы представляют собой ветвящиеся полимерные цепи, состоящие из различных остатков гексоз (D-глюкоза, D-галактоза, манноза),

    пентоз (L-ксилоза, L-арабиноза) и уриновых кислот (глюкуроновая и галактуроновая). Эти компоненты гемицеллюлоз сочетаются между собой в разных количественных отношениях и образуют разнообразные комбинации.

    Цепочки гемицеллюлоз состоят из 150-300 молекул мономеров. Они значительно короче. Кроме этого цепи не кристаллизуются и не образуют элементарных фибрилл.

    Именно поэтому гемицеллюлозы нередко называют полуклетчатками. На их долю приходится около 30-40 % сухого веса клеточных стенок.

    По отношению к химическим реагентам гемицеллюлозы гораздо менее стойки, чем целлюлоза: они растворяются в слабых щелочах без подогревания; гидролизуются с образованием сахаров в слабых растворах кислот; растворяются полуклетчатки и в глицерине при температуре 300о С.

    Гемицеллюлозы в теле растений играют:

    Механическую роль, участвуя наряду с целлюлозой и другими веществами в построении клеточных стенок.

    Роль запасных веществ, отлагающихся, а затем расходующихся. При этом функцию запасного материала несут преимущественно гексозы; а гемицеллюлозы с механической функцией обычно состоят из пентоз. В качестве запасных питательных веществ гемицеллюлозы отлагаются также в семенах многих растений.

    Пектиновые вещества имеют довольно сложный химический состав и строение. Это гетерогенная группа, в которую входят разветвленные полимеры, несущие отрицательные заряды из-за множества остатков галактуроновой кислоты. Характерная особенность: пектиновые вещества сильно набухают в воде, а некоторые в ней растворяются. Легко они разрушаются и под действием щелочей и кислот.

    Все клеточные стенки на ранней стадии развития почти целиком состоят из пектиновых веществ. Межклеточное вещество срединной пластинки, как бы цементирующее оболочки соседних стенок, состоит также из этих веществ, главным образом из пектата кальция. Пектиновые вещества, хотя и в небольших количествах, имеются в основной толщине и взрослых клеток.

    В состав матрикса клеточных стенок помимо углеводных компонентов входит также структурный белок, называемый экстенсином. Он является гликопротеином, углеводная часть которого представлена остатками сахара арабинозы.

    11

       В основу классификации витаминов положен принцип растворимости их в воде и жире.

         Водорастворимые витамины: В1 (тиамин), В2 (рибофлавин), PP (никотиновая кислота), В3 (пантотеновая кислота), В6 (пиридоксин), В12 (цинкобаламин), Вc (фолиевая кислота), H (биотин), N (липоева кислота), P (биофлаваноиды), C (аскорбиновая кислота) – участвуют в структуре и функционировании ферментов.

         Жирорастворимые витамины: А (ретинол), провитамин А (каротин), D (кальцеферолы), Е (токоферолы), K (филлохиноны).

         Жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их оптимальное функциональное состояние.

         Имеются также витаминоподобные вещества: В13 (оротовая кислота), В15 (пангамовая кислота), В4 (холин), В8 (инозитол), Вт (карнитин), h2 (параминбензойная кислота), F (полинасыщенные жирные кислоты), U (S=метилметионин-сульфат-хлорид).

    studfiles.net

    основные функции в клетке простых и сложных: в чем заключается строительная, защитная и энергетическая роль

    Для поддержания нормальной жизнедеятельности человеку необходимо употреблять белки, жиры и углеводы. И ни один элемент нельзя взять и перестать принимать. Недостаток каждого из них может привести к тяжелым последствиям или даже к смерти.

    Вконтакте

    Facebook

    Twitter

    Google+

    Мой мир

    Что такое углеводы

    Углеводы

    Так называют органические вещества, состоящие из молекул сахара. Эти соединения получили свое название из-за своего состава – углерод и вода, которые соединяются между собой. По-другому их называют сахаридами. В зависимости от количества молекул сахара их делят на моносахариды, дисахариды, олигосахариды и полисахариды.

    Клетки какого организма наиболее богаты ими? Наиболее богаты углеводами растения: содержание сахаров – до 80%, а у животных их не более 3%.

    Сахариды играют важную роль. Главными их предназначениями являются:

    • энергетическая;
    • строительная;
    • рецепторная;
    • защитная;
    • запасающая;
    • регуляторная;
    • метаболическая.

    Следовательно, видна их важность в целом, без них невозможно представить существование животных и растений. А какова роль углеводов в клетке? В чем заключаются их главные миссии – строительная и энергетическая? Рассмотрим подробнее.

    Это интересно! Что такое пластический и энергетический обмен

    Строительная

    Строительная, или структурная, – это основная функция углеводов, которая заключается в том, что это строительный материал для клеток. Какие углеводы выполняют в клетке строительную миссию? В ней участвуют целлюлоза, хитин, рибоза и дезоксирибоза.

    Так, например, у грибов и членистоногих строительную функцию выполняет хитин, а целлюлоза (полисахарид) – у растений. Таким образом придается прочность клетке. У растительной содержание целлюлозы достигает 40%, поэтому они хорошо держат форму. Структурная функция мальтозы – обеспечение образования новых клеток прорастающих семян.

    Углеводы, роль в клетке

    Рибоза и дезоксирибоза участвуют в построении таких молекул, как РНК, ДНК, АТФ и другие. Образование новых молекул происходит постоянно, а с разрушением старых освобождается свободная энергия. При построении мембраны цитоплазмы также проявляется рецепторная функция углеводов, а именно передаются сигналы из внешнего мира.

    Таким образом, строительная функция углеводов имеет большое значение для всех процессов, как и энергетическая.

    Энергетическая функция

    Это основная роль таких органических соединений, и только они дают больше всего энергии. Так, при распаде 1 грамма освобождается 4,1 ккал (38,9 кДж) и 0,4 грамма воды. Такой энергии не может дать ни один другой элемент клетки, поэтому они обеспечивают весь организм нужным ее количеством. Именно они поддерживают тонус, придают жизненные силы и энергию, а главное – позволяют организмам существовать.

    Энергетическую миссию выполняют мальтоза, сахароза, фруктоза и глюкоза. Они служат источниками клеточного дыхания, энергией для прорастания семян, фотосинтеза и других важных биологических процессов.

    Важно! Шоколадки, конфеты и другие сладости, помимо выделения гормона радости, также содержат огромное количество сахаридов, поэтому и являются отличным источником энергии и заряда бодрости. Это и есть главная функция простых углеводов в клетке.

    Такая энергия позволяет человеку активно заниматься спортом, умственной деятельностью, а также участвуют во многих жизненно важных системах:

    • газообменная;
    • выделительная;
    • кровеносная;
    • строительная и другие.

    Поэтому без энергетической подпитки человек не сможет нормально существовать.

    Защитная

    Защитная функция очень важна. Практически в каждом органе существуют железы, которые выделяют некий секрет. А он, в свою очередь, большей частью состоит из сахаров. Этот секрет защищает внутренние органы, например выделительные или органы ЖКТ, от внешних факторов – микробов, химических или механических.

    Углеводы

    Защиту обеспечивают, по большей части, моносахариды – гепарин, хитин, камедь и слизь. А значит, это главная роль моносахаридов. Так, например, простой моносахарид хитин – оболочка панциря членистоногих и грибов. А гепарин выполняет миссию антикоагулянта. Также у растений существуют свои защитные механизмы – шипы и колючки, которые состоят из целлюлозы. Камедь и слизь возникает при травмах оболочки растений, для образования защитного слоя в местах травм.

    Запасающая

    Запасающая роль напрямую связана с энергетической ролью сахаров. Ведь энергия, которая поступает в организм, тратится не полностью, часть ее откладывается. Во время «аварийных ситуаций» она освобождается, например, во время голода или заболевания, для борьбы с вирусом.

    Для этого предназначены следующие соединения:

    • крахмал (инулин) – содержится в растениях;
    • целлюлоза – также в растительных организмах;
    • лактоза – в молоке млекопитающих животных;
    • гликоген (животный жир) – в организме животных и людей.

    Верблюжий жир служит не только запасом нужной энергии, но и может расщепляться в воду.

    Таким образом, полисахариды помогают поддерживать нормальную жизнедеятельность.

    Регуляторная

    Под ней подразумевают способность сахаридов регулировать количество некоторых веществ в организме. Так, например, глюкоза, которая содержится в крови, регулирует гомеостаз и осмотическое давление. А клетчатка, которая плохо усваивается человеческим организмом, имеет грубую структуру, благодаря чему раздражает рецепторы желудка и быстрее продвигается в нем.

    Метаболическая

    Проявляется в способности моносахаридов синтезироваться в важные элементы для поддержания жизнедеятельности – полисахариды, нуклеотиды, аминокислоты и другие. Все это жизненно важно, поэтому углеводосодержащие продукты должны быть в рационе всегда.

    Продукты с большим количеством сахаридов

    Стоит помнить, что у растений сахариды синтезируются при фотосинтезе, но у животных они никак не появляются сами по себе. Получить нужную их дозу можно только с помощью еды.

    Углеводы

    Самое большое количество сахаридов содержится в рафинаде и меде. Сахар и рафинад целиком углеводны, а мед содержит глюкозу и фруктозу – до 80% от общей массы.

    Большое содержание их в продуктах растений. Наибольшее количество во фруктах, ягодах, овощах, корнеплодах. Большой процент содержания в макаронах, сладостях, в мучных изделиях и продуктах брожения (пиве).

    Важно! В продуктах животного происхождения углеводов очень мало. Например, лактоза – молочный сахар, содержится в молоке млекопитающих животных.

    Важно помнить, что сахариды, особенно быстрые, являются источниками ожирения человеческого организма. Поэтому употреблять их нужно в очень ограниченном количестве, так, например, сладкое и хлебобулочные изделия, лучше убрать из рациона или свести к минимуму.

    Роль углеводов в жизни клетки

    Углеводы — их функции, значение, где содержатся

    Выводы

    Углеводные соединения играют важную роль, без них живое просто перестанет существовать. Растения синтезируют их при фотосинтезе, с помощью хлорофиллов. А вот человек и животные их не синтезируют, именно поэтому нужно потреблять суточную норму из пищи. Наибольшее их количество содержится во фруктах, ягодах, хлебе, сладостях. А чистым сахаридом является сахар.

    uchim.guru

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о