Красные мышцы – «Генетические везунчики» на примере мышечных волокон и людей — Информационный портал Школы идеального тела #Sekta

    Содержание

    «Генетические везунчики» на примере мышечных волокон и людей — Информационный портал Школы идеального тела #Sekta

    Во время тренировки мы не часто задумываемся о том, какие сложные процессы протекают во всем организме. О пользе регулярной физической активности говорят уже давно, и каждый год ученые со всего мира пытаются пролить свет на новые «полезные» механизмы влияния тренировок на здоровье.

    Как следствие особого внимания к активному образу жизни, мы – ученые, получили ценную информацию о том, каким образом протекают разные процессы и чем именно достигается их ювелирная координация в организме человека.

    В данной статье мы постараемся перевести эти интересные факты с профессионального языка исследователей на научно-популярный и рассказать просто о сложном.


    В этот раз хочется начать с рассказа про мышечные волокна, почему в физиологии их условно разделили на несколько типов, и в чем разница между силовыми и аэробными занятиями.

    Мышечные волокна – это то, из чего состоит отдельно взятая мышца, допустим, бицепс. Этот мускул, как и все остальные, содержит два основных типа мышечных волокон – быстрые (или «белые») и медленные (или «красные») [1].

    Красные волокна, которые расположены ближе всего к кости, получили свое название из-за высокой концентрации особых клеточных органелл – митохондрий («энергетических станций») и большого запаса пигментного белка красного цвета  миоглобина («переносчиков кислорода»).

    Миоглоби́н – белок, который связывает кислород в клетках скелетных мышц и мышцы сердца и таким образом обеспечивает их энергией для сокращения.

    Продвигаясь к наружной поверхности мышцы, можно увидеть белые волокна

    , которые называются так из-за того, что действительно имеют менее выраженный цвет, чем красные. В них мало митохондрий, нет миоглобина, и для работы им необходимо запустить целый каскад биохимических реакций. [1]

    Белые (быстрые) волокнаКрасные (медленные) волокна
    Источник «топлива» — гликоген (углевод).Резерв «топлива» – подкожная жировая ткань [1]. Сокращаются только в присутствии кислорода.
    Задача быстрых волокон – обеспечить мощные кратковременные сокращения с помощью резкого повышения активности ферментов, расщепляющих гликоген. Имеют большую силу и
    возможность значительного роста
    . Преимущество белых волокон в виде гипертрофии способно помочь в развитии силовых возможностей человека.
    Красные мышечные волокна при высокой производительности не способны к значительной гипертрофии, то есть их объем почти не увеличивается из-за особенностей их метаболизма [8]. Отвечают за поддержание позы, осанки, позволяют длительно бежать или сделать 100 повторений «на пресс», но они не растут [1].
    При интенсивных силовых тренировках возможно частичное превращение медленных волокон в промежуточные, которые обладают свойствами как медленных, так и быстрых волокон, давая прирост мышечной массе [9].Запасы красных волокон «застрахованы» организмом, и даже малоподвижный образ жизни способен поддерживать эти резервы на уровне, достаточном для перемещения тела в пространстве.

    Как уже стало понятно, белые волокна – это рельеф, объем и скоростно-силовые характеристики. Для того чтобы 40 раз отжаться или работать на пределе возможностей, включаются в работу быстрые волокна.

    Исходя из знаний про мышечную ткань, важно понимать, что, тренируя выносливость во время аэробных занятий, мы в основном задействуем красные волокна, которые будут «сжигать жир» и повысят уровень обмена веществ
    . Силовые же тренировки позволяют поддерживать мышцы в тонусе и формируют привычный мышечный рельеф стройного тела, задействуя белые волокна.

    Теперь, когда сложилось общее представление о волокнах, самое время узнать более интересные научные факты о мышечной ткани.

    Все знают популярную, но устаревшую с научной точки зрения, фразу о том, что нервные клетки не восстанавливаются, но эта «необратимость» относится и к мышечной ткани в равной степени.

    Дело в том, что после рождения у нас не происходит численного увеличения мышечных клеток обоих типов волокон, а после 35-40 лет каждый год мы безвозвратно теряем 1% сухой мышечной массы за счет уменьшения их объема. [2,5]

    Замедлить этот процесс помогает активный образ жизни и регулярные силовые упражнения на тренировку основных мышечных групп [6].

    Некоторые люди, даже не утруждая себя тренировками, имеют достаточную мышечную массу, а другие, напротив, быстро теряют форму при малоактивном образе жизни.

    Объяснение этой разнице дает генетика, а именно гены ACTN3 и MSTN. Альфа-актинин 3, кодируемый геном ACTN3 белок, который словно якорь сцепляет актиновые волокна в мышце и находится только в белых мышечных волокнах, повышая их сократимость и силу [1, 3, 4].

    Актин – сократительный белок, который составляет около 15% мышечного белка. Соединяясь с другими белками, волокна актина приобретают способность сокращаться, используя энергию, содержащуюся в АТФ.

    Копии генов ACTN3

    1. У относительно небольшого числа людей этот ген представлен двумя «рабочими» копиями, которые достались им от каждого из родителей. Такая особенность предрасполагает к высокому содержанию ACTN3 в мышцах, и, соответственно, высокой силе, мышечному рельефу, а также позволяет добиться особых успехов в тех видах спорта, где требуется взрывная сила или ускорение (например, баскетбол, спринтерский бег и тяжелая атлетика). [3,4]
    2. Обратная ситуация наблюдается примерно у 18% европейской популяции, когда от родителей достались две «нерабочие« копии гена ACTN3. При таком раскладе в белых волокнах практически нет альфа-актинина 3, такие люди в основном имеют красные мышечные волокна и преуспевают в тренировках на выносливость.
    3. Наиболее часто встречается ситуация, когда от одного из родителей достался «рабочий» вариант гена, а от другого – «нерабочий», при этом мы с помощью тренировок можем компенсировать вклад «нерабочего» гена и развить скоростно-силовые качества.

    В спортивной генетике исследование гена ACNT3 позволяет выявить спортсменов, которые могут преуспеть в силовых дисциплинах, или в тех видах спорта, где требуется высокий уровень выносливости. Также выявление изменений гена ACTN3 позволяет косвенно оценить соотношение белых и красных мышечных волокон. [3,4]

    В противовес эффектам гена ACTN3 выступает ген MSTN, который кодирует белок миостатин. Задача миостатина – предотвратить избыточный рост мышечной ткани, что важно для здоровья сердца.

    Количество генов MSTN

      1. Бывают ситуации, когда у человека выявляется вариант гена MSTN, обладающий большей активностью, что означает повышенное содержание миостатина и, соответственно, более стремительное противостояние организма мышечному росту [7]. Такие люди часто астенического телосложения, и им очень тяжело нарастить мышечную массу, даже сочетая оптимальное питание с тренировками.
      2. Реже встречаются люди, обладающие двумя «нерабочими« вариантами гена MSTN. Миостатина у них крайне мало, ничто не препятствует росту мышечной ткани, что приводит к гипертрофии мышц даже без дополнительных тренировок. Часто они выглядят как культуристы, так как жировая прослойка у таких людей выражена не ярко и дает проявиться мышечному рельефу [7].
      3. Бывает и промежуточный вариант, когда от одного из родителей человеку досталась неактивная копия гена MSTN. Соответственно, миостатина в крови содержится меньше за счет синтеза белка с единственной рабочей копии гена [7]. Такой человек без труда наращивает мышечную массу и обладает высокой силой.

    Сегодня я осветила эти два гена неспроста, ведь они оба ответственны за подержание мышечной массы.

    Только небольшая часть людей действительно предрасположена к гармоничному телу и выдающимся возможностям «от природы», и чаще всего они становятся профессиональными спортсменами [4].

    Однако большая часть людей все-таки не имеет таких явных преимуществ в достижении стройного, рельефного тела или развитии силы и выносливости, поэтому регулярные тренировки как интервальные, так и силовые, помогают «перевесить» генетику и приводят к заметным результатам. При этом

    крайне важно поддерживать имеющиеся мышцы в тонусе, защищая их от неизбежной атрофии с возрастом и малоподвижным образом жизни [5]. 

    Автор: Жегулина Ирина, врач-генетик
    Научный редактор: Елена Дегтярь, PhD, руководитель научного отдела #Sekta

    Литература:

    1) «Физиология человека» под  редакцией В.М.Покровского, Г. Ф. Коротько 2001 г.
    2) Chronic disuse and skeletal muscle structure in older adults: sex-specific differences and relationships to contractile function. American Journal of Physiology — Cell Physiology. 2015 [PMID:25810256]
    3) Association of the ACTN3 R577X polymorphism with power athlete status in Russians. European journal of applied physiology  – 2008 [PMID: 18470530]

    4) 1000 Norms Project: protocol of a cross-sectional study cataloging human variation. Physiotherapy. 2015 [PMID: 25733400]
    5) Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans. The Journal of physiology 2015. [PMID:25809942]
    6) Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy. Current opinion in clinical nutrition and metabolic care 2015. [PMID:25807353]
    7) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.  Cellular and molecular life sciences 2014. [PMID:25080109]
    8) Shi H, Zeng C, Ricome A, Hannon KM, Grant AL, Gerrard DE. Extracellular signal-regulated kinase pathway is differentially involved in β-agonist-induced hypertrophy in slow and fast muscles. American Journal of Physiology. 2007;292(5):C1681–C1689.[PMID:17151143]
    9) Powers SK, Wade M, Criswell D, et al. Role of beta-adrenergic mechanisms in exercise training-induced metabolic changes in respiratory and locomotor muscle. International Journal of Sports Medicine.1995;16(1):13–18. [PMID:8904577]

    sektascience.com

    Как правильно качать мышцы белые и красные (Таблица).

    Когда я бываю в тренажерном зале, то замечаю, что многие «пирожки» вообще не понимают, что они делают и для чего.  Чтобы ваши тренировки были осознанными и вы понимали какие мышцы вы развиваете, а главное как это нужно делать я подготовил статью и таблицу «Как правильно качать мышцы белые и красные».

    На теле человека более 600 различных мышц. 50% мышц сосредоточено в нижних конечностях, 30% — в верхних конечностях и 20% приходится на мышцы головы и туловища.  У женщин масса мышц составляет 30-35% от массы тела, а у мужчин 40-45%, у спортсменов 45-55%.

    Различают «быстрые» мышцы (ГМВ), «красные» мышцы (ОМВ).

    Гликолитические мышечные волокна (ГМВ) хорошо подходят для взрывной силы, скорости, спринтерского бега. Окислительные мышечные волокна (ОМВ) наоборот, больше приспособлены для выносливости, длительного бега.

    Тренируются каждый тип мышечных волокон по-разному (см. Таблицу). В динамическом режиме развивают ГМВ, а в статодинамическом ОМВ. Если в тренировке ГМВ используют полную амплитуду движения (присел-встал), то при тренировке ОМВ используют небольшую амплитуду движения под напряжением, порядка 15-20% (присели – чуть привстали, снова чуть присели). Подробнее смотрите в таблице «Как правильно качать мышцы белые и красные?»

    Между подходами необходимо отдыхать для восстановления ГМВ 5-10 минут, а ОМВ 3-7 минут. Здесь подразумевается активный отдых. Это не сидеть на стуле, а покрутить педали, походить подвигаться, чтобы выгнать из мышцы ионы водорода.  В это время можно делать подходы на другую группу мышц. Например, делали ноги, а пока перерыв, то можно делать на руки или пресс.

    3 повтора на группу мышц – поддерживающая тренировка. Если хотите, чтобы мышцы развивались, тогда необходимо делать от 4 до 9 повторов на каждую группу мышц, которую хотите развивать.

    Развивающую тренировку достаточно делать 1 раз в две недели, чтобы мышцы могли полноценно развиваться. Но если вам очень хочется, то можно 1 раз в неделю, но не чаще на конкретную группу мышц.

    Как правильно качать мышцы (белые и красные).

    Похожее

    maximbuvalin.ru

    1. Строение мышцы.

    Содержание

    1. Строение мышцы………………………………………………………………………

    3

    2. Красные и белые мышечные волокна……………………………………..

    9

    3. Аэробная и анаэробная работа…………………………………………….

    12

    4. Виды спорта, относящиеся к аэробной работе…………………………….

    22

    5. Соотношение красных и белых мышечных волокон в трех любых видах спорта………………………………………………………………………

    23

    6. Список литературы………………………………………………………… 25

    Для осуществления различных движений в организме человека, как и у всех позвоночных животных, имеются 3 вида мышечной ткани: скелетная, сердечная и гладкая. Каждому виду ткани свойствен свой тип видоизмененных клеток — мышечных волокон.

    • Сердечная мышца, как и скелетная, состоит из поперечнополосатых мышечных волокон. Эти волокна в определенных участках как бы сливаются (переплетаются). Благодаря этой особенности сердечная мышца способна быстро сокращаться.

      Строение сердечной мышцы.

    По структуре сократительных элементов сердечная мышца сходна с поперечно полосатыми мышцами, хотя по своим физиологическим свойствам от них и отлична: сердечная мышца, как гладкая мускулатура, обладает свойством ритмического сокращения. Кроме того, она отличается и некоторыми особенностями строения. Ее своеобразная структура заключается в наличии так называемых вставочных полосок, идущих поперек мышечных волокон. Полоски эти проходят через группы миофибрилл на разном уровне, образуя своеобразную сетевую структуру. Долго оставался неясным и спорным вопрос о значении вставочных полосок. Он разрешен электронной микроскопией, установившей, что полоски образованы плазматическими мембранами двух смежных мышечных клеток, разделенных межклеточным пространством. Миофибриллы через этот слой не проходят, и нет никаких признаков их непрерывного перехода из одной клетки в другую. Таким образом, подтвердилось предположение о том, что территории, ограниченные вставочными полосками, представляют отдельные клетки.

    В клетках сердечной мышцы млекопитающих имеется одно ядро в центре клетки, около него расположены элементы пластинчатого комплекса. Для этих клеток характерно высокое содержание саркоплазмы с большим количеством саркосом и гликогена, что связано с непрерывной активностью сердечной мышцы и интенсивностью протекающих в ней метаболических процессов.

    • Стенки внутренних органов (сосудов, кишечника, мочевого пузыря) образованы гладкой мышечной тканью. Сокращение волокон этой ткани происходит медленно.

    Строение гладкой мышечной ткани.

    Это ткань энтомезенхимного происхождения, которая делится на два вида: висцеральную и сосудистую. В эмбриональном гистогенезе даже электронно-микроскопически трудно отличить мезенхимные предшественники фибробластов от гладких миоцитов. В малодифференцированных гладких миоцитах развиты гранулярная эндоплазматическая сеть, комплекс Гольджи. Тонкие филаменты ориентированы вдоль длинной оси клетки. По мере развития размеры клетки и число филаментов в цитоплазме возрастают. Постепенно объем цитоплазмы, занятый сократительными филаментами, увеличивается, расположение их становится все более упорядоченным. Пролиферативная активность гладких миоцитов в миогенезе постепенно снижается. Это происходит в результате увеличения продолжительности клеточного цикла, выхода клеток из цикла репродукции и перехода в дифференцированное состояние. Однако и в дефинитивном состоянии в гладкой мышечной ткани клеточная регенерация в виде размножения миоцитов полностью не прекращается. Существуют данные о том, что пролиферация и дифференцировка в большей степени свойственна субпопуляции малых (по размерам) гладких миоцитов. Строение гладкой мышечной ткани. Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерий обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм.

    Наибольшей длины гладкие миоциты достигают в стенке матки — до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактилъные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность. Плазмолемма расслабленной клетки имеет ровную поверхность, а при сокращении становится складчатой. В центре клетки имеется палочковидное ядро, которое при сокращении клетки спиралевидно изгибается. Практически все ядра миоцитов содержат диплоидное количество ДНК. Гладкая эндоплазматическая сеть занимает примерно 2-7% объема цитоплазмы, а гранулярная сеть в контрактильных миоцитах выражена плохо. Митохондрии мелкие, сферические или овоидные, расположены у полюсов ядра. Характерной чертой гладких миоцитов является наличие множества впячиваний (кавеол) плазмолеммы, содержащих ионы кальция. Секреторные миоциты (синтетические) по своей ультраструктуре напоминают фибробласты, однако содержат в цитоплазме пучки тонких миофиламентов, расположенные на периферии клетки. В цитоплазме хорошо развиты комплекс Гольджи, гранулярная эндоплазматическая сеть, много митохондрий, гранул гликогена, свободных рибосом и полисом. По степени зрелости такие клетки относят к малодифференцированным. Сократительный аппарат миоцитов представлен тонкими актиновыми филамен-тами (гладкомышечным альфа-актином), связанными с тропомиозином. Толстые нити состоят из миозина, мономеры которого располагаются вблизи филаментов актина. Соотношение актиновых и миозиновых филаментов в гладком миоците составляет 12 к 1. Важным компонентом контрактильного аппарата миоцитов являются электронно-плотные структуры — тельца прикрепления, расположенные свободно в цитоплазме (плотные тельца) или тесно связанные с плазмолеммой. Основными белковыми компонентами плотных телец являются альфа-актинин, актин (немышечный) и кальпонин, что позволяет расссматривать их как функциональный эквивалент Z-линий

    миофибрилл скелетной мышцы. Актиновые филаменты фиксируются на плотных тельцах. Промежуточные филаменты, включающие десмин и виментин, обеспечивают связи между плотными тельцами и плазмолеммой, образуя прикрепительные пластины. Сократительные белки формируют решетчатую структуру, закрепленную по окружности плазмолеммы, поэтому сокращение выражается в укорочении клетки, которая приобретает складчатую форму, тогда как в состоянии покоя клетка вытянута. При возникновении нервного импульса, распространяющегося по плазмолемме миоцита, происходит повышение уровня внутриклеточного Са2+, который поступает в цитоплазму из кавеол, отшнуровывающихся в цитоплазму в виде пузырьков. Высвобождение ионов кальция приводит к каскаду реакций, в результате которого происходит полимеризация миозина и образование перекрестных связей миозина вдоль актиновых филаментов по мере развития мышечного сокращения. Расслабление мышцы возникает при восстановлении концентрации исходного уровня Са2+ внутри клетки путем его перемещения внутрь саркоплазматической сети. При этом образовавшиеся в присутствии ионов кальция связи между актином и миозином нарушаются, акто-миозиновый комплекс распадается, гладкий миоцит расслабляется. Гладкие миоциты синтезируют протеогликаны, гликопротеиды, проколлаген, проэластин, из которых формируются коллагеновые и эластические волокна и основное вещество межклеточного матрикса. Взаимодействие миоцитов осуществляется с помощью цитоплазматических мостиков, взаимных впячиваний, нексусов, десмосом или простых участков мембранных контактов клеточных поверхностей.

    Скелетные мышцы образованы поперечнополосатой мышечной тканью, мышечные волокна которой собраны в пучки. Внутри волокон проходят белковые нити, благодаря которым мышцы способны укорачиваться — сокращаться.

    К каждой мышце подходят кровеносные сосуды и нервы. Мышцы покрыты соединительнотканной оболочкой и прикрепляются к кости при помощи сухожилий.

    В теле человека примерно 600 мышц (разными методами подсчета получают несколько разные цифры). Самые маленькие прикреплены к мельчайшим косточкам, расположенным в ухе. Самые крупные — большие ягодичные мышцы — приводят в движение ноги. Самые сильные мышцы — икроножные и жевательные.

    Каждая скелетная мышца состоит из множества тонких мышечных волокон, толщиной 0,05-0,11 мм и длиной до 15 см. Мышечные волокна собраны в пучки по 10-50 штук, окруженные соединительной тканью. Сама мышца тоже окружена соединительной тканью (фасцией). Мышечные волокна составляют 85-90% массы мышцы, остальную часть составляют кровеносные сосуды и нервы, проходящие между ними. Мышечные волокна плавно переходят на концах в сухожилия, а сухожилия крепятся к костям.

    В саркоплазме (цитоплазме) мышечных волокон содержится множество митохондрий, которые выполняют роль электростанций, где проходят процессы обмена веществ и скапливаются вещества богатые энергией, а также другие вещества, необходимые для обеспечения энергетические потребностей. Каждая мышечная клетка имеет тысячи митохондрий, которые составляют 30-35% ее массы. Митохондрии выстраиваются цепочкой вдоль миофибрилл, тонких мышечных нитей, благодаря которым и происходит сокращение-расслабление мышц. Одна клетка содержит обычно несколько десятков миофибрилл. Длина миофибриллы может достигать нескольких сантиметров, а масса всех миофибрилл мышечной клетки составляет около 50% ее общей массы. Таким образом, толщина мышечного волокна главным образом будет зависеть от количества находящихся в нем миофибрилл и от поперечного сечения миофибрилл. Миофибриллы в свою очередь состоят из множества крохотных саркомеров.

    Целенаправленные занятия физкультурой и спортом приводят к:

    • увеличению количества миофибрилл в мышечном волокне;

    • увеличению поперечного сечения миофибрилл;

    • увеличению размеров и количества митохондрий, снабжающих миофибриллы энергией;

    • увеличиваются запасов энергоносителей в мышечной клетке (гликогена, фосфатов и т.д.).

    В процессе занятий сначала увеличивается сила мышцы, в следствии увеличивается толщина мышечного волокна, что в конечном итоге приводит к общему увеличению поперечного сечения всей мышцы. Процесс увеличения толщины мышечных волокон называется гипертрофия, а уменьшения — атрофия.

    Сила и мышечная масса увеличиваются не пропорционально: если мышечная масса увеличивается, например, вдвое, то мышечная сила при этом увеличится втрое.

    Биопсии мышечной ткани показали более низкий процент миофибрилл в мышечных волокнах женщин, чем у мужчин (даже у спортсменок высокой квалификации). Вкупе со значительно более низким уровнем тестостерона (тестостерон заставляет «выжимать» из мужского организма максимум), традиционная у мужчин тренировка на увеличение мышечной массы с большими весами в малом числе повторений оказывается малоэффективной для большинства женщин. Поэтому женщины и не могут нарастить огромные мышцы, как бы ни старались. Количество мышечных волокон в конкретной мышце задано генетически и в процессе тренировок не изменяется. Поэтому человек с большим количеством мышечных волокон в конкретной мышце имеет больший потенциал для развития этой мышцы, нежели другой человек, имеющий меньшее количество мышечных клеток в этой мышце.

    studfiles.net

    Красные мышцы — Справочник химика 21

        Вообще говоря, у мелких животных кислород доставляется к мышцам циркуляторными системами достаточно быстро, так что необходимости в анаэробном использовании мышечного гликогена у них нет. Птицы, например, при своих перелетах часто покрывают огромные расстояния с очень большой скоростью без какой бы то ни было кислородной задолженности. Красным мышцам многих бегающих животных среднего размера также свойствен по преимуществу аэробный метаболизм. Однако у крупных животных при напряженной и длительной работе циркуляторная система оказывается уже не в состоянии поддерживать полностью аэробный метаболизм в мышцах. Эти животные движутся обычно медленно, и только крайние обстоятельства вынуждают их к усиленной мышечной активности, поскольку за каждой такой вспышкой активности должен следовать долгий период восстановления, необходимый для погашения кислородной задолженности. [c.443]
        Патологическая анатомия. При остром отравлении окисью углерода кожа и видимые слизистые оболочки приобретают розовый оттенок ( румяный труп). Нередко наблюдаются ограниченные отеки кожи, пятнистые, узелковые, пузырьковидные высыпания. Кровь ярко-красная, мышцы и внутренние органы имеют розовый или красный цвет. Наиболее типичны патоморфологические находки со стороны центральной нервной системы, которые локализуются как в стенках кровеносных сосудов, так и в самой ткани мозга. По данным Ф. И. Пожариского (1939), П. П. Движкова (1964), при остром воздействии окиси углерода характерным являются значительные сосудистые расстройства резкое полнокровие, стазы, наличие периваскулярного и перицеллюлярного отека. В мелких сосудах отмечается образование гиалиновых тромбов. Во всех отделах мозга наблюдаются то мелкие, то более крупные кровоизлияния. [c.208]

        В красных мышцах присутствует особый белок миоглобин, способный, подобно гемоглобину, связывать и отдавать кислород. Этот белок способствует снабжению мышечных волокон кислородом. [c.443]

        Миоглобин содержится в красных мышцах и участвует в запасании кислорода. В условиях кислородного голодания (например, при сильной физической нагрузке) кислород высвобождается из комплекса с миоглобином и поступает в митохондрии мышечных клеток, где осуществляется синтез АТР (окислительное фосфорилирование см. гл. 13). [c.53]

        Тонические мускулы птиц (передняя широкая мышца спины, верхней части крыла и шеи) отличаются от медленных фазных мышц (грудной) рядом свойств и приближаются к тонической мускулатуре лягушки. Иннервация тонических мышц имеет вид виноградной кисти, миофибриллы располагаются полями, линия Ъ неровная, слабо развиты Т-система и СР. Эта мускулатура обладает затяжным одиночным сокращением, замедленным достижением максимального напряжения при тетанусе и стойким поддержанием этого напряжения при длительном ритмическом раздражении. Особенностью тонических волокон птиц является способность генерировать ПД. Таким образом, они не чисто тонические. В мышцах такого типа хорошо развит энергетический аппарат. Они красные и похожи на медленные фазные волокна. Их относят к особому птичьему типу. Исключением служат красные мышцы колибри, которые относятся к быстрым. Фазные мышцы птиц ничем существенным не отличаются от таковых мышц млекопитающих [c.52]

        У лошади, способной к длительному непрерывному бегу, мышцы ног состоят преимущественно из красных волокон. Белые мышечные волокна, содержащие мало митохондрий, отличаются чрезвычайно высо- кой частотой сокращений. Источником АТР служит для них анаэробный гликолиз, так что работать с максимальной интенсивностью они могут лишь очень короткое время, поскольку имеющийся в них запас гликогена используется малоэффективно. В отличие от белых красные мышцы сокращаются медленнее, содержат много митохон- [c.442]

        Как отмечалось, в локомоторной мускулатуре млекопитающих нет тонических мышц. Функция поддержания позы у них перешла к медленным фазным мышцам. Тоническая мускулатура у них обслуживает органы чувств. У низших млекопитающих в скелетной мускулатуре превалируют красные мышцы с длительным временем одиночного сокращения, т.е. обладающие тоническими свойствами. В них происходит контрактура в ответ на деполяризующие агенты. [c.53]

        Красные и белые мышцы. Скелетные мышцы неоднородны в них различают несколько разновидностей, основные из которых — красные мышцы (медленные, аэробные) и белые мышцы (быстрые, анаэробные). Красные мышцы содержат много митохондрий и обладают высокой способностью к аэробному окислению глюкозы, жирных кислот, кетоновых тел. Они хорошо снабжаются кровью и содержат много миоглобина, который и придает им красный цвет. В белых мышцах мало митохондрий, но зато много гликолитических ферментов, и в них с большой скоростью происходит анаэробный распад гликогена. Соответственно, различаются и функциональные возможности этих мышц. Красные мышцы более приспособлены к продолжительной работе, в то время как белые мышцы быстрее переходят от состояния покоя к максимальной активности, сокращаются энергично, но в них скоро истощаются запасы гликогена, а поступление глюкозы из крови и ее использование в клетках белых мышц происходят медленно. [c.528]

        В теле человека нет целиком белых или целиком красных мышц (в отличие от многих животных, например птиц, кроликов). Мышцы человека содержат и красные, и белые мышечные волокна их относительное количество в разных мышцах неодинаково. Имеются также и индивидуальные различия. Последнее обстоятельство позволяет оценивать спортивные возможности людей например, более пер- [c.528]

        Мышечная ткань птицы содержит полноценные и легкоперевариваемые белки, количество которых колеблется от 15,2 до 23,3 % в зависимости от вида и возраста птицы. Мышечная система птиц представлена совокупностью белых и красных мышц. Яркую окраску имеют мышцы, совершающие активную работу в процессе движения и имеющие высокое содержание природного пигмента-миоглобина. [c.101]

        В этой главе мы уделяли наибольшее внимание тем стратегическим хмеханизмам, с помощью которых различные организмы разрешали проблему нехватки кислорода. С эвристической целью мы выделили 1) компенсаторную стратегию, требующую возврата к аэробиозу, и 2) эксплуатативную стратегию, не требующую возврата к аэробиозу и поэтому дающую возможность более полно использовать бескислородные местообитания. Третье возможное решение проблемы состоит в том, чтобы просто избежать ее. Для этой цели могут служить разнообразные формы поведения, которые нам здесь нет надобности рассматривать. На биохимическом и физиологическом уровнях возможен лишь один путь предотвраш,ения нехватки 0 — появление систем доставки кислорода, достаточно эффективных для поддержания баланса даже при крайне высокой потребности в Ог. Как мы уже упоминали, у позвоночных эта задача решается в отношении некоторых тканей ( красных мышц, сердца, головного мозга) путем регуляции кровотока, особо благоприятствующей снабжению их кислородом. Эти ткани, однако, обладают способностью к гликолизу, позволяющей им переносить кратковременную аноксию. Головной мозг млекопитающих, например, выдерживает аноксию в течение нескольких минут. [c.83]

        Миоглобин, пигмент красных мышц, содержит в качестве своей простетической группы тот же протогем, что и гемоглобин [202] белковый же его компонент отличается от глобина. [c.254]

        В одном эритроците находится около 400 млн молекул гемоглобина, каждая из которых способна присоединять четыре молекулы О2 по одной на каждую субъединицу

    www.chem21.info

    Медленные мышечные волокна (окислительные) — SportWiki энциклопедия

    Различия и динамические свойства

    Медленные мышечные волокна — это медленно сокращающиеся волокна, которые отличаются небольшой силой, но низкой утомляемостью. Они небольшие по размеру и плохо гипертрофируются. Участвуют в выполнении длительной низкоинтенсивной работы на выносливость (бег, ходьба), то есть при аэробных нагрузках. За счет высокого содержания миоглобина имеют красный цвет.

    Все скелетные мышцы состоят из мышечных клеток — миоцитов или мышечных волокон. Выделяют разные типы миоцитов, которые специализируются на разных видах нагрузки. По ряду структурно-функциональных характеристик мышечные клетки скелетной мускулатуры классифицируются на два типа:

    • Медленные мышечные волокна, также называемые красные мышечные волокна или окислительные мышечные волокна (ОМВ) — подтипа I (о них пойдет речь в данной статье)
    • Быстрые или белые мышечные волокна или гликолитические мышечные волокна (ГМВ) — подтипа IIa[1], IIb.
    Отличия быстрых и медленных волокон

    Мотонейроны медленных волокон имеют наиболее низкие пороги их активации, меньшие толщина аксона и скорость проведения возбужде­ния по нему. Аксон разветвляется на небольшое число концевых веточек и иннервирует небольшую группу мышечных волокон. У мотонейронов медленных волокон сравнительно низкая частота разрядов (6-10 имп/с). Они начинают функционировать уже при малых мышечных усилиях. Так, мотонейроны камбаловидной мышцы человека при удобном стоянии работают с частотой 4 имп/с. Ус­тойчивая частота их импульсации составляет 6- 8 имп/с. С повыше­нием силы сокращения мышцы частота разрядов мотонейронов мед­ленных волокон повышается незначительно (до 25 имп/с). Мотонейроны медленных волокон способны поддерживать постоянную частоту разрядов в течение десятков минут.

    Мышечные волокна медленных волокон развивают небольшую силу при сокращении в связи с наличием в них меньшего, по сравнению с быстрыми волокнами, количества миофибрилл. Скорость сокращения этих волокон в 1,5-2 раза меньше, чем быстрых. Основными при­чинами этого являются низкая активность миозин АТФ-азы и мень­шие скорость выхода ионов кальция из саркоплазматического ре-тикулума и его связывания с тропонином в процессе возбуждения волокна.

    Мышечные волокна медленных волокон малоутомляемы. Они обладают хорошо развитой капиллярной сетью. На одно мышечное волокно, в среднем, приходится 4-6 капилляров. Благодаря этому во время сокращения они обеспечиваются достаточным количеством кислоро­да. В их цитоплазме имеется большое количество митохондрий и высокая активность окислительных ферментов. Все это определяет существенную аэробную выносливость данных мышечных волокон и позволяет выполнять работу умеренной мощности длительное время без утомления.

    Для чего нужны медленные мышечные волокна[править | править код]

    Медленные или красные мышечные волокна выполняют следующие функции в организме:

    • Динамическая работа или аэробика — длительный бег, плавание или велогонка. Этот тип волокон преобладает у марафонцев, велогонщиков и других легкоатлетов.
    • Поддержание позы (мышцы спины).
    • Производство тепла.

    Как уже было сказано выше, этот тип волокон богат миоглобином — белком, который запасает в себе кислород. Во время выполнения аэробных физических нагрузок митохондрии красных мышечных волокон производят энергию за счёт окисления глюкозы кислородом. Миоглобин способен отдавать кислород митохондриям, если с кровью его поступает недостаточно. Медленные мышечные волокна хорошо кровоснабжаются, поэтому кислорода к ним поступает значительно больше, чем к быстрым миоцитам.

    Красные мышечные волокна и бодибилдинг[править | править код]

    В исследованиях было продемонстрировано, что медленные мышечные волокна обладают слабой способностью к гипертрофии (разрастанию). Другие испытания показали, что соотношение быстрых и медленных мышечных волокон практически не меняется в результате специализированных тренировок. Это значит, что если в вашем организме преобладают красные мышечные волокна, то ваши результаты в бодибилдинге или пауэрлифтинге будут хуже, чем у среднего человека, в тоже время вы будете иметь преимущество в легкоатлетических видах спорта.

    Как определить соотношение волокон?[править | править код]

    Воспользуйтесь специальной разработанной экспертной системой, которая предложит выполнить вам несколько измерений, автоматически проанализирует их и выдаст адаптированный результат. Эта система имеет очень низкую погрешность, так как использует сразу несколько критериев расчета.

    Данная экспертная система проводит расчет по нескольким важнейшим критериям: соотношение различных типов волокон, окружность запястья, скорость метаболизма, наличие заболеваний, длина мышцы и др.

    Автор: Кирилл Агогэ

    В рунете существует система взглядов на рост медленных волокон (далее ММВ, они-же тип I):

    1. Они не растут от больших весов
    2. Они не растут от работы на полную амплитуду, так как нужна особая амплитуда для их роста, работа без расслабления мышц
    3. Для медленных волокон нужны медленные движения
    4. Невозможна смена типа волокна с II на I
    5. Отдельной темой является прием фармакологии для их роста и роста выносливости
    6. Работа низкой интенсивности (на АнП и ниже АнП) рекрутирует только медленные волокна, а спринты, предельные ускорения — все волокна

    Читайте: статодинамика и статодинамические упражнения для тренровки ОМВ по Селуянову.

    Медленные волокна не растут от больших весов[править | править код]

    Медленные волокна гипертрофируются от работы и с малыми, и с большими и со средними весами.[2] Более того, обнаружены случаи, когда в течение одного года, наблюдая за реакцией пожилых людей на тренировку, ничего кроме роста медленных волокон у них не было от работы с 75% от 1ПМ, и лишь к концу года к росту медленных волокон добавился рост быстрых.[3] Изучения синтеза белка, расхода аминокислот, активации клеток сателлитов также показывают, что медленные волокна реагируют точно также как и быстрые на работу с 70-80% от 1ПМ.[4][5][6]

    Также существует факт смены цепочек миозина и типа волокон по скорости сокращения от тренировки, равно как и от отсутствия тренировок из-за травм и гиподинамии. Причем именно работа с большими весами снижает уровень миозина IIX.[7]

    Работая с маленькими весами вы не повышаете рост медленных волокон, а, скорее, снижаете эффективность роста быстрых волокон. Но они, по-прежнему, активируются и растут даже от маленьких весов, особенно в тройных подходах один за другим. Помимо того, что от больших весов идет рост медленных волокон, но от них еще идет и рост ядер в клетках.[8]

    Также работа с большими весами у тяжелоатлетов не только ведет к смене скорости сокращения мышц, но и вызывает рост митохондрий.[9] Но это происходит без роста МПК, что указывает на недостаточность одного лишь роста митохондрий и смены типа волокон. И подчеркивает, что нужна транспортная система для кислорода, которая не появляется просто от того, что у вас есть медленные волокна и митохондрии.

    Медленные волокна не растут от работы на полную амплитуду[править | править код]

    Мы уже знаем, что медленные волокна гипертрофируются от любых весов при любой амплитуде. При работе с маленьким весом без расслабления мышц вы по-прежнему тренируете все свои мышцы, просто они включаются не сразу, если вес мал, а постепенно.[10] Лишь по мере продолжения подхода, или серии подходов всё новые и новые быстрые волокна типа II включаются в работу. Взяв 50% от 1ПМ без расслабления мышц, можно сказать, что вы тренируете сразу все свои волокна. Польза пампинга не столько в росте медленных волокон, сколько в массе других положительных эффектов, например, ангиогенезе (капилляризации)[11], в артериогенезе (стимуляции коллатералей[12], улучшении кровоснабжения мышц). Потенциально, ишемия мышц может стимулировать и эритропоэз, рост объема крови. Т.е. пампинг — это полезное средство для развития транспортных систем, для роста выносливости. И это среди прочих полезных средств упоминается в обзорах.[13][14][15][16][17][18][19]

    Невозможна смена типа волокна со II на I[править | править код]

    Действительно, мышечная композиция — это генетика. Но генетика мотонейрона, если вы им не пользуетесь, например, вследствие лежачего образа жизни или травм, ведет к тому, что медленные волокна становятся быстрыми, а после возврата к тренировкам — опять медленными. Также на мышечную композицию[20] могут влиять электростимуляция[21] и состояние щитовидной железы. Если вследствие мутаций у вас нарушено преобразование быстрых волокон в медленные[22], то рост капилляров и митохондрий будет бесполезен.[23]

    Прием фармакологии для роста медленных волокон и роста выносливости[править | править код]

    Если мышцы не растут, то зачастую их рост начинают стимулировать приёмом курса тестостерона. НО! У медленных волокон реакция рецепторов на изменение уровня тестостерона отсутствует. Они реагируют на гормон роста, ИФР-1, инсулин[24]. Это не значит, что их надо принимать, чтобы стать выносливее. Приём тестостерона[25], равно как и ГР, нарушает работу митохондрий, а последующее обнуление тестостерона[26] после прекращения курса дополнительно бьет по митохондриям. Надо лишь иметь здоровые естественные уровни гормонов, и этого достаточно для здоровья митохондрий.[27][28][29] Не менее важным является и состояние щитовидной железы для здоровья митохондрий.[30] Например, у женщин есть гипертрофия мышц от эстрогена, и именно по рецепторам эстрогена «работает» экдистерон.[31][32]

    Работа низкой интенсивности рекрутирует медленные волокна[править | править код]

    В ряде исследований существуют утверждения, что при низкой интенсивности работы тратится жир и гликоген только в медленных волокнах, а при предельной интенсивности — во всех волокнах. Но в чём секрет прогресса от объемных, низкоинтенсивных тренировок? Дело в том, что по мере истощения гликогена всё новые и новые волокна включаются в работу[33][34][35][36], и если новичку достаточно 30-60 минут[37] для проработки всех свои мышц, то профессиональному спортсмену (в видах спорта на выносливость) для истощения гликогена придется либо делать много спринтов[38] либо дольше выполнять объемную тренировку. Не зря находят корреляцию активности PGC-1 со степенью истощения гликогена[39]. Спринты не стимулируют рост ОЦК и гемоглобиновой массы[40], а объемные тренировки — да[41].

    Также важно подобрать оптимум отдыха и времени спринтов для получения эффекта от тренировок, причём индивидуально.[42] Спортсмены элитного уровня в ЦВС делают большие объемы тренировок, и, понимая, что они рекрутируют 100% мышечных волокон, становится ясно, почему они получают от них результат.[43] Интервалы же для нетренированных активных людей не имели никакого преимущества перед объемными тренировками.[44]

    Для медленных волокон нужны медленные движения[править | править код]

    Разница в скорости сокращений между 2 типами мышечных волокон не имеет никакого значения при силовых тренировках со штангой. Можно научиться включать быстрые сокращения без медленных, но это будет иметь нулевой практический смысл в культуризме[45], так как единственное значение в скорости сокращения заключается в том, что быстрые волокна при резких движениях могут рекрутироваться раньше медленных, медленные могут раньше отключаться[46]. То есть дерганые движения с маленькими весами прорабатывают не медленные, а быстрые волокна, но это несущественно в рамках того, что работа без расслабления мышц всё равно будет включать быстрые волокна. Также то, что быстрые волокна при быстрых движениях рекрутируются раньше медленных, может объяснить нам, почему люди с большой долей ММВ прыгают низко, а с большой долей быстрых — высоко[47][48].

    1. ↑ также именуемые промежуточные мышечные волокна (ПМВ)
    2. ↑ http://www.nauchforum.ru/ru/node/6180
    3. ↑ http://www.ncbi.nlm.nih.gov/pubmed/8282977
    4. ↑ http://www.ncbi.nlm.nih.gov/pubmed/22327327
    5. ↑ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156941/
    6. ↑ http://www.ncbi.nlm.nih.gov/pubmed/18931969
    7. ↑ http://www.ncbi.nlm.nih.gov/pubmed/18787090
    8. ↑ Responses of knee extensor muscles to leg press training of various types in human. Netreba A1
    9. ↑ Staron, R.S. Human Skeletal Muscle Fiber Type Adaptability to Various Workloads / R.S. Staron, R.S. Hikida, F.C. Hagerman, G.A. Dudley, T.F. Murray
    10. ↑ Blood Flow Restriction Exercise in Sprintersand Endurance Runners 2013 год
    11. ↑ 2012, Exercise intensity and muscle hypertrophy in blood flow–restricted limbs and non-restricted muscles: a brief review
    12. ↑ http://www.ncbi.nlm.nih.gov/pubmed/2262453
    13. ↑ https://pp.vk.me/c623130/v623130613/3f1c3/KoYkRQMSdnU.jpg
    14. ↑ The Use of Occlusion Training to Produce Muscle Hypertrophy Jeremy Paul Loenneke, BS and Thomas Joseph Pujol, EdD, CSCS Department of Health, Human Performance, and Recreation, Southeast Missouri State University, Cape Girardeau, Missouri
    15. ↑ H.T. YANG1 , B.M. PRIOR2 , P.G. LLOYD3 , J.C. TAYLOR4 , Z. LI1 , M.H. LAUGHLIN1 , R.L. TERJUNG1 TRAINING-INDUCED VASCULAR ADAPTATIONS TO ISCHEMIC MUSCLE
    16. ↑ http://www.ncbi.nlm.nih.gov/pubmed/? term=Muscle+oxidative+capacity+and+work+performance+after+training+under+local+leg+ischemia
    17. ↑ http://www.ncbi.nlm.nih.gov/pubmed/?term=Hemodynamic+and+hormonal+responses+to+a+short-term+lowintensity+resistance+exercise+with+the+reduction+of+muscle+blood+flow
    18. ↑ http://www.ncbi.nlm.nih.gov/pubmed/23412543
    19. ↑ http://www.ncbi.nlm.nih.gov/pubmed/11990743
    20. ↑ http://1belok.ru/o/425/smena-tipa-myshechnykh-volokon/
    21. ↑ http://1belok.ru/o/395/10-gerts-delayut-bmv-medlennymi/
    22. ↑ http://1belok.ru/o/319/transkriptsionnyy-koaktivator-alfa-pgc-1-stimuliruet-formirovanie-medlennykhmyshechnykh-volokon/
    23. ↑ http://1belok.ru/o/320/odin-polimorfizm-nukleotida-gly482ser-v-pgc-1-gene-ukhudshaet-vyzvannoeuprazhneniem-preobrazovanie-myshechnogo-volokna-v-medlennyy-okislitelnyy-tip-u-lyudey/
    24. ↑ http://1belok.ru/o/390/retseptory-k-gormonam/
    25. ↑ http://1belok.ru/o/347/testosteron-transseksualy-i-mitokhondrii/
    26. ↑ http://1belok.ru/o/348/snizhenie-testosterona-i-mitokhondrii/
    27. ↑ http://1belok.ru/o/351/nizkiy-testosteron-i-bolezni-mitokhondriy/
    28. ↑ http://1belok.ru/o/349/mitokhondrii-testosteron-i-zhiroszhiganie/
    29. ↑ http://1belok.ru/o/350/testosteron-i-starye-myshi/
    30. ↑ http://1belok.ru/o/310/regulyatsiya-sinteza-mtdnk-shchitovidnoy-zhelezoy/
    31. ↑ https://pp.vk.me/c623130/v623130655/407c7/ZmDTPb4SMmo.jpg
    32. ↑ http://1belok.ru/o/372/ekdisteron-vs-farma/
    33. ↑ http://www.ncbi.nlm.nih.gov/pubmed/6524389/
    34. ↑ Recruitment pattern of muscle fibre type during high intensity exercise (60–100% VO 2 max) in Thoroughbred horses S. Yamano a , D. Eto b , A. Hiraga b , H. Miyata
    35. ↑ 8 https://pp.vk.me/c627718/v627718790/178e3/XOq22e-3vXk.jpg https://pp.vk.me/c627718/v627718790/178ea/YLlNGhYRgvM.jpg https://pp.vk.me/c627718/v627718790/178f5/AnznAlohaxs.jpg Sarcoplasmic Reticulum Ca2+-ATPase Activity and Glycogen Content in Various Fiber Types after Intensive Exercise in Thoroughbred Horses Yoshio MINAMI1, Seiko YAMANO2, Minako KAWAI1, Atsushi HIRAGA3 and Hirofumi MIYATA1*
    36. ↑ http://www.ncbi.nlm.nih.gov/pubmed/25640469
    37. ↑ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047011/
    38. ↑ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013969/
    39. ↑ https://pp.vk.me/c627718/v627718790/17897/JjA7i3gyStg.jpg
    40. ↑ http://www.ncbi.nlm.nih.gov/pubmed/26282186
    41. ↑ http://www.ncbi.nlm.nih.gov/pubmed/26164709
    42. ↑ http://www.ncbi.nlm.nih.gov/pubmed/20424855/
    43. ↑ https://vk.com/agogee?w=wall-73104052_2118
    44. ↑ Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials.Milanović Z1, Sporiš G, Weston M.
    45. ↑ http://1belok.ru/o/334/rekrutirovanie-myshts/
    46. ↑ http://jeb.biologists.org/content/217/19/3528
    47. ↑ http://1belok.ru/o/407/otlichiya-elitnykh-sportsmenov-na-vynoslivost-i-silu/
    48. ↑ http://bmsi.ru/doc/4bb5f9c6-ff73-4376-8cbd-849aa9093194

    sportwiki.to

    Типы мышц: тренировки

    Приветствую всю нашу честную братию! Сегодня мы продолжим нудить, ибо нас ждет продолжение, вторая часть, заметки под названием «Типы мышечных волокон». Из нее Вы узнаете все о практических аспектах тренинга того или иного типа, выявите, какие волокна преобладают у Вас, и как в связи с этим необходимо строить свой тренировочный процесс и подбирать упражнения.

    Итак, если все в сборе, тогда начнем.

    Типы мышечных волокон: как выявить доминантные и эффективно тренироваться?

    Конечно, наша заметка была бы не полной, если бы мы не рассмотрели практическую сторону вопроса, поэтому давайте продолжим наше вещание в этом ключе. Но перед этим ознакомьтесь с первой частью заметки, чтобы не возникало никаких вопросов. Готово? Вот теперь начнем с рассмотрения следующего вопроса…

    Количество повторений и вовлекаемые волокна.

    Следующая памятка поможет Вам определиться с количеством повторений и типом мышечных волокон, вовлекаемых в работу.

    №1. Развитие максимальной мощности.

    Количество повторений до отказа 1-3. Нагрузка высокая и составляет 95-100% от одноповторного максимума. Такая схема тренинга оставляет в работе тип волокон IIA и, в основном, тип IIB для завершения последнего повторения. Она наиболее распространена у сильнейших атлетов-пауэрлифтеров. При нем имеет место миофибриллярная гипертрофия, связанная с увеличением белка в мышцах за счет сателлитных клеток, помогающих повысить количество и размер сократительных белков (актина и миозина). Количество мышечных волокон остается тем же самым, однако сателлитные клетки сливаются с существующими клетками и жертвуют свои ядра и ДНК, помогая увеличиваться в размере мышечным волокнам.

    №2. Силовой тренинг.

    Количество повторений до отказа 2-6. Для завершения повторений используются промежуточные и тип IIB волокна. Такая схема тренинга подходит для тех, кто хочет увеличить свои силовые показатели и развить анаэробную выносливость. Миофибриллярная гипертрофия происходит за счет сателлитных клеток, увеличения сократительных белков актина и миозина.

    №3. Тренировки на развитие гипертрофии.

    Количество повторений до отказа 8-20. Такая схема тренинга заставляет включаться в работу тип I, промежуточный и тип IIB волокна. В отличие от тренинга №1 и №2, гипертрофия происходит не за счет миофибриллярного аппарата, а за счет саркоплазматического, увеличивая количество саркоплазмы. Количество повторений и используемые веса, необходимые для выполнения заданного количества повторений, будут гарантировать потенциал роста всем типам волокон.

    №4. Развитие выносливости.

    Количество повторений 20 и более. Волокна типа I — это выносливые волокна, которые быстро восстанавливаются в сравнении с быстросокращающимися. Идеальная тренировка на выносливость должна включать подходы по 90 секунд с использованием веса без чувства отказа в течение этого времени. Другими словами, чтобы не провоцировать включение в работу более сильных мышечных волокон – промежуточных и быстросокращающихся, необходимо использовать легкие веса и не стремиться в повторениях к отказу. В таком случае можно надеяться только на тренировку волокон типа I.

    Типы мышечных волокон. Как правильно тренироваться? Общие советы.

    Следующие советы помогут Вам сориентироваться в отношении стратегии тренировок и использовании тренировочных принципов.

    Итак, запомните:

    • для развития волокон тип I нужно в неделю проводить больше аэробных тренировок, в частности, в соотношении 4 против 1-2 силовых;
    • волокна типа IIA хорошо поддаются росту при длительных анаэробных тренировках с использованием суперсетов, гигантских сетов, дроп-сетов;
    • если Ваша цель — сбросить вес, и у Вас преобладают красные (медленные) волокна, то необходимо ориентироваться на бег в умеренном темпе на длинные дистанции. В таком случае, благодаря аэробному способу получения энергии, сжигаются жиры;
    • если Ваша цель — увеличение силовых показателей и количества белых волокон типа IIB, то необходимо тренироваться в диапазоне 3-7 повторений;
    • чтобы в работу включились быстрые волокна и происходило увеличение мышечной массы, необходимо тренироваться интенсивно, т.к. только в таком случае в работу включаются волокна с большими мотонейронами (тип II);
    • количество повторений в диапазоне 8-12 в совокупности с высокой степенью интенсивности всей тренировки окажут максимальное воздействие на увеличение размера мышц;
    • силовой тренинг на развитие быстрых волокон подразумевает короткие подходы (до 7 повторений) с несколькими (2-4) минутами отдыха;
    • продолжительные нагрузки от 40 минут в аэробной зоне пульса направлены на сжигание жира и вовлечение в работу медленных волокон;
    • тренировки на голодный желудок (при низком уровне гликогена) направлены на тренировку волокон типа I.

    Собственно, все это время мы глаголили относительно типов мышечных волокон и схем тренинга, но как узнать, какой тип волокон преобладает конкретно у нас? В этом поможет следующая подглава.

    Тест на беременность соотношение быстрых/медленных мышечных волокон

    В бодибилдинге, как ни странно, тоже существуют свои тесты, причем для некоторых из них не требуется никакого сподручного оборудования. Так, в частности, чтобы выявить преобладающий у атлета тип мышечных волокон, проводят следующий тест – лимит повторений мышцы по сравнению с ее максимальной силой. Смысл заключается в следующем:

    1. выбирают 1 изоляционное (условно-изоляционное) упражнение для конкретной мышечной группы, например, бицепса – подъем гантели одной рукой/EZ-штанги двумя;
    2. подбирают вес снаряда таким, чтобы можно было выполнить “чисто” самостоятельно только 1 повторение (1 RM);
    3. отдых 3-5 минут;
    4. берут вес, который составляет 80% от 1 RM (для этого умножают максимальный на 0,8) и выполняют столько повторений, сколько это возможно.
    5. если количество повторений укладывается в диапазон от 4 до 7, то у Вас преобладают быстрые (гликолитические) мышечные волокна, которые являются сильными, но не выносливыми;
    6. если количество повторений составляет 10, то имеет место паритет быстрых и медленных волокон;
    7. если количество повторений укладывается в диапазон от 12 до 15, то у Вас преобладают медленные (окислительные) мышечные волокна.

    Поясню более популярно, о чем идет речь. Например, Вам надо определить, какие волокна преобладают у Вас в двуглавой мышце плеча. Вы смогли поднять 1 раз гантель на бицепс с весом 30 кг, значит 1 RM = 30 кг, 80% будет составлять 24 кг. Затем Вы отдохнули и выполнили подход с количеством повторений 13, следовательно, Ваш бицепс тормозной :), т.к. состоит преимущественно из красных мышечных волокон.

    Используя такой алгоритм, необходимо пройтись по каждой мышечной группе и, используя свои изоляционные упражнения, выявить тип преобладающих мышечных волокон. Обладая такими данными, Вам будет проще построить свою тренировку и добиться максимума отдачи от своих мускулов.

    Думаю, возник резонный вопрос: какие изоляционные упражнения можно использовать для каждой мышечной группы. Ответ Вы найдете в следующей памятке.

    В текстовом варианте упражнения на группы мышц выглядят следующим образом:

    Идем далее.

    Мышечные группы по типам волокон

    Согласитесь, интересно было бы узнать, как тренировать ту или иную мышечную группу в ключе знания типов волокон, ей соответствующих. Ведь в таком случае тренинг получается более осмысленным, и можно уже самому пытаться составлять программу тренировок.

    В связи с этим, я составил некий обобщенный атлас мышечных групп по типу мышечных волокон. Вот что он из себя представляет.

    Что касается некоторых особенностей типов мышечных волокон (м.в.) мышечных групп, то они следующие:

    • бицепсы бедра и большая ягодичная относятся к смешанному типу, с преобладанием медленных м.в. Поэтому их необходимо нагружать более высоким количеством повторений до отказа;
    • камбаловидная состоит на 70%, а икроножная на 55% из красных м.в. (т.е. она пограничный смешанный тип с небольшим перевесом медленных м.в.). Поэтому в связи с тем, что подъемы на носки сидя нагружают камбаловидную, необходимо выполнять большее количество повторений до отказа при ее тренировке. В свою очередь к тренировке икроножных необходимо подходить с небольшим количеством повторений (до 8), но большим весом, поэтому выполнение подъемов стоя на носки требуется выполнять с предельными весами;
    • передняя поверхность бедра достаточно индивидуальная мышечная группа, в которой типы мышечных волокон варьируются м/у смешанными от быстрых до медленных. Прямая мышца бедра преимущественно обладает быстросокращающимися м.в. Поэтому приседания (многосуставное движение) со штангой на груди/плечах следует проводить с большим весом, но небольшим количеством повторений. Однако при выполнении разгибаний в коленном суставе в тренажере сидя (односуставное движение) оптимальным вариантом будет комбинированный подход к нагрузке;
    • дельты относятся к смешанному типу волокон со смещением в сторону красных, поэтому выгоднее всего их тренировать, используя комбинированный подход, с акцентом на более высокое количество повторений до мышечного отказа;
    • бицепс, трицепс, грудные – в этих мышечных группах преобладают белые м.в., поэтому их лучше прорабатывать с акцентом на высокую нагрузку и малое число повторений;
    • широчайшая мышца спины имеет практически идеальный баланс (50/50) м/у быстрыми и медленными м.в., поэтому “крылья” необходимо прорабатывать используя комбинированный подход;
    • пресс – промежуточный тип с преобладанием волокон быстрого подергивания, поэтому в тренировке мышц живота целесообразней использовать комбинированный подход;
    • трапеции и разгибатели спины – в них преобладают окислительные волокна, это выносливые мышцы, которые необходимо “долбить” большим количеством повторений.

    Теперь поговорим про…

    Типы мышечных волокон и восстановление

    Важным аспектом тренинга является понимание вопросов восстановления мышечных групп в зависимости от типов преобладающих волокон. Итак, говоря о восстановлении волокон, всегда будем держать в уме следующую памятку.

    Приведу некоторые поясняющие моменты:

    • волокна IIB рекрутируются только в течение последних 2-20 секунд сокращений, вблизи мышечного отказа (истощения ресурса мускула);
    • время восстановления волокон IIB составляет порядка 4-10 дней, по этой причине нет никакого смысла часто ходить в тренажерный зал для тренировки быстрых волокон;
    • если силовые тренировки были возобновлены до восстановления волокон типа IIB (например, после 3 дней отдыха), то Вы почувствуете, что мышечное истощение будет происходить гораздо раньше, чем в предыдущей сессии. Определенная часть волокон будет как бы “законсервирована” и не будет доступна для “найма”. Восстановление, ремонт и рост мышц происходит только после достаточного отдыха;
    • в отличие от типа IIB, выносливые волокна типа I становятся доступны для найма уже после 90 секунд отдыха.

    Вывод: в связи с указанными выкладками, оптимальной стратегией тренинга является использование умеренно тяжелых весов. Это позволяет достаточно быстро прогрессировать по всем видам моторных единиц (типам волокон), вовлекая оные в работу – не так быстро, чтобы только белые волокна получают основную часть стимуляции, и не так медленно, чтоб красные и промежуточные двигательные единицы могут восстановиться. Таким образом получается, что для максимально полного воздействия (тотальный охват) на весь спектр мышечных волокон, вес отягощения должен быть не легким, но и не слишком тяжелым.

    Это были общие выкладки, теперь давайте конкретно пройдемся по каждому типу волокон и выявим оптимальное количество повторений и время работы под нагрузкой.

    Типы мышечных волокон: оптимальное время нахождения под нагрузкой и количество повторений в сете

    Чтобы было наглядней и понятней, сведем все цифровые и текстовые данные в соборную таблицу. В итоге получим следующее (кликабельно).

    Помните, какие волокна у Вас преобладают, и какие особенности у того или иного типа, это поможет Вам определиться с количественными параметрами тренировок.

    Собственно, мы уже посвятили достаточное количество времени типам мышечных волокон, теперь давайте разберем, какие схемы тренинга нужно использовать, исходя из своего типа телосложения. Итак, думаю, Вы в курсе самой комментируемой заметки проекта, касающейся типов телосложения, расположена она здесь [Типы телосложения].

    Так вот, в связи с этим полезно будет знать, как следует тренироваться в свете доставшегося телесного наследства. Это мы и разберем. И начнем с типа телосложения…

    №1. Эктоморф.

    Худощавый тип с длинными конечностями и преобладающим красным типом мышечных волокон. Именно поэтому данные представители медленно набирают мышечную массу, т.к. их волокна тормозят и их много. При силовых тренировках Вы в праве рассчитывать на увеличение силы и, в меньшей степени, мышечной массы. В общем и целом, эктоморфу свои усилия необходимо сосредоточить на стимулировании БМВ (быстрые м.в.), и хотя соотношение ММВ и БМВ особо не изменяется (в пределах 10%) в результате тренировок, все же соотношение масс этих волокон достаточно хорошо поддается управлению. Т.е. если у эктоморфа условно до начала тренировок соотношение БМВ и ММВ = 20:80%, то во время занятий увеличится “удельный вес” быстрых волокон. Другими словами, правильный тренинг поспособствует гипертрофии белых волокон и атрофии красных. И, как следствие, такой атлет спотенцирует свой мышечный рост.

    Вывод: идеальным (с точки зрения увеличения мышечной массы) количеством повторений в подходе является 4-8.

    №2. Мезоморф.

    Поджарый и в целом атлетичный тип фигуры, с высоким процентом быстрых мышечных волокон типа 2А и 2В. При силовых тренировках в праве рассчитывать на увеличение как силовых, так и объемных показателей.

    №3. Эндоморф.

    Округлые коренастые атлеты с высоким процентным содержанием волокон быстрого типа 2В. При силовых тренировках в праве рассчитывать на еще большее увеличение силы, с корректировкой в сторону увеличения, мышечной массы.

    Мезоморфы и эндоморфы изначально имеют больше БМВ, поэтому для увеличения мышечной массы им просто нужно слегка себя подтолкнуть.

    Вывод: идеальным (с точки зрения увеличения мышечной массы) количеством повторений для мезоморфа является 8-12, эндоморфа 12-15 за подход.

    Общим правилом для увеличения мышечной массы является высокая интенсивность тренировки, ибо именно она позволяет включить (в последних повторениях) быстрые мышечные волокна, ответственные за гипертрофию. А в свете того, что белые волокна имеют гораздо большую поверхность, чем красные, то и мышечные объемы будут прирастать лучше. Таким образом получается, что тренировка на увеличение мышечной массы предполагает высокую интенсивность в диапазоне отказных повторений на 8-12 раз.

    Ну и в заключении (или Вы уже спите? :)) рассмотрим тренировочную схему на максимальное развитие быстрых мышечных волокон.

    Как по максимуму задействовать белые мышечные волокна? Схема тренинга.

    Множество научных исследований приходят к выводу, что максимальной вербовки БМВ позволяет добиться следующая тренировочная схема — сплит:

    • тренировка №1: 1-5 повторений, 3-5 минут отдыха, многосуставные упражнения;
    • тренировка №2: 8-12 повторений, 60-90 секунд отдыха, только многосуставные движения;
    • тренировка №3: 12+ повторений, 30-60 секунд отдых, суперсеты, многосуставные и изоляционные движения.

    Другими словами, одна тренировка в неделю должна быть силовой (лифтинг) и состоять из упражнений – становая тяга, приседания, жим лежа, подтягивания, отжимания на брусьях, жимы на плечи и тяги штанг. Другая – классической-культуристической с числом повторений 8-12 и третья – интенсивно-памповой с выполнением упражнений в стиле паровозик (суперсеты).

    Уфф-ф, собственно, у меня все, теперь давайте подытожим всю это болтологию и будем прощаться.

    Послесловие

    Ну вот и завершили мы мутоторную техническую заметку про типы мышечных волокон. Молодцы, что дочитали до конца, теперь Вы знаете, какие типы волокон бывают, как их выявить и стимулировать к росту. Все это поможет максимально развить Ваш мышечный потенциал и добиться того телосложения, которого всегда хотелось. На сим все, рад был уснуть писать для Вас, до связи!

    PS. а Вы разделяете тренировку по типу волокон?

    PPS. Внимание! 22.03 станет доступна возможность отправки анкет для составления персональной программы тренировок и питания. Буду рад нашей совместной работе!

    С уважением и признательностью, Протасов Дмитрий.

    Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.

    ferrum-body.ru

    Программа тренировок на медленные (красные) мышечные волокна

    Медленные мышечные волокна, что это такое? В нашем теле есть медленные и быстрые мышечные волокна, медленные — отвечают за выносливость, чем больше у Вас медленных мышечных волокон, тем выносливее вы будете, но силы меньше, за силу отвечают быстрые мышечные волокна, разумеется, выносливостью они похвастаться не могут.  Как узнать какой у вас тип волокон? Очень просто, если же вы выносливый,  бегаете марафоны, можете часами заниматься, то у вас больше медленных волокон. Если же Вы сильны, но не на продолжительное отрезок времени и количество подходов с большим весом не значительно, то у Вас больше быстрых волокон. Если же Вы уверенны, что у вас значительно преобладают быстрые мышечные волокна то вам лучше заниматься по программе на быстрые мышечные волокна, они более предрасположены к росту, и вы будете быстрее прогрессировать. Если же Вы выносливый, и у Вас преобладают медленные мышечные волокна, то эта тренировка для Вас. Тренируйтесь с небольшими весами 40-60% от разового максимума, чтобы вы могли выполнять большее количество повторений с небольшим отдыхом в 1 минуту. Не забывайте, что каждая тренировка должна заканчиваться с жжением в мышцах, Ваш организм каждый раз должен находится в стрессовом состоянии чтобы мышцы росли.  Хорошо разминайтесь перед тренировкой дабы не получить травму.  Не забывайте хорошо кушать, только при многоразовом усиленном питании вы будете расти, а не сушиться.

     

    СПИНА

    • Подтягивания 4 подхода по 10-15 раз
    • Тяга штанги в наклоне 4 подхода по 12-20 раз
    • Становая тяга 4 подхода по 12-20 раз
    • Тяга гантелей в наклоне 4 подхода по 12-20 раз
    • Горизонтальная тяга в блочном тренажере 4 подхода 12-20 раз
    • Шраги со штангой 4 подхода по 12-20 раз

    ПЛЕЧИ

    • Жим штанги стоя 3-4 подхода по 12-20 раз
    • Тяга штанги к подбородку широким хватом 3-4 подхода по 12-20 раз
    • Махи гантелями на переднюю дельту 3 подхода 20 повторений
    • Махи гантелями на среднюю дельту  3 подхода 20 повторений
    • Махи гантелями в наклоне на заднюю дельту 3 подхода 20 повторений
    • Подъём ног в висе на пресс  4 подхода 20-25 повторений

    ГРУДЬ

    • Жим лёжа 4 подхода по 15-20 раз
    • Жим под углом 4 подхода по 12-20 раз
    • Жим гантелей 4 подхода по 12-20 раз
    • Отжимания на брусьях 3-4 подхода по 15-25 раз
    • Отжимания от пола 3-4 подхода по 15-25 раз
    • Скручивания на пресс 4 подхода 20-25 раз

    НОГИ

    • Приседания 3-4 подхода по 15-20 раз
    • Становая тяга сумо 3-4 подхода по 12-20 раз
    • Жим ногами 3-4 подхода по 15-20 раз
    • Румынский подъём 3-4 подхода по 15-20 раз
    • Подъём на носки стоя 4 подхода по 20-30 раз

    РУКИ

    • Жим узким хватом 4 подхода по 12-20 раз
    • Отжимания от скамьи 4 подхода по 20-25 раз
    • Отжимания с узкой постановкой рук 4 подхода по 15-20 раз
    • Подъём штанги на бицепс 3-4 подхода по 15-20 раз
    • Подъём гантелей на бицепс 3-4 подхода по 15-20 раз
    • Молот 3-4 подхода по 15-20 раз

    sportarius.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *